Degrees Offered at IIT

<table>
<thead>
<tr>
<th>Field</th>
<th>Bachelor's</th>
<th>Master's</th>
<th>Doctorate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerospace</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Architectural</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Biomedical</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Chemical</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Civil</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Computer</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Electrical</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Environmental</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Metallurgical and Materials</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Molecular Biochemistry and Biophysics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Humanities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internet Communication</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Professional and Technical Communication</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Manufacturing Technology and Management</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Mathematics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Biology</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Computer</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Physics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Social Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Political Science</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Psychology</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Post-Baccalaureate Only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytical Chemistry</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Business Administration</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Design</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Electricity Markets</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Environmental Management</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Finance</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Financial Markets and Regulation</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Financial Markets and Trading</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Food Process Engineering</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Food Safety and Technology</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Health Physics</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Law</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Management Science</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Manufacturing Engineering</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Marketing Communication</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Materials and Chemical Synthesis</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Operations and Technology Management</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Personnel and Human Resources Development</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Public Administration</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Public Works</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Rehabilitation Counseling</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Technical Communication and Information Design</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Telecommunications and Software Engineering</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Foreword for the IIT Undergraduate 2001-2003 Bulletin

Purpose of the IIT Undergraduate Bulletin

This bulletin describes the academic programs and resources, policies, procedures and student services in effect at the time of publication. It is a primary source of information for undergraduate students, faculty and administration.

General information regarding the history of the university, the setting of the campus, and campus life is also included. These sections can be used by prospective students and others to gain an understanding of the university as a whole.

The programs described in this bulletin are applicable to those students who entered IIT in the academic years 2001-2002 and 2002-2003. Students follow the programs described in the bulletin in effect at the time of their first registration.

Changes in programs and policies often occur before a new bulletin is published. A faculty adviser from the student’s major department is the best source for current curriculum information. The Office of Educational Services can refer students to the appropriate administrative office for current policies and procedures. Most policies in this bulletin are also found within www.enrollment.iit.edu.

It is the intention of Illinois Institute of Technology to act in accordance with all regulations of the federal, state and local governments with respect to providing equality of opportunity in employment and in education, insofar as those regulations may pertain to IIT. IIT prohibits and will act to eliminate discrimination on the basis of race, color, religion, national origin, sex, age, handicap or veteran status.

Any student, applicant or employee of Illinois Institute of Technology who believes that he or she has received inequitable treatment because of discrimination violating IIT's stated policy of equal opportunity in employment and in education should communicate, either in writing or in person, with the affirmative action officer, Room 223, Perlstein Hall, Illinois Institute of Technology.

For descriptions of graduate programs and courses, see the IIT Bulletin: Graduate Programs. For descriptions of law programs and courses, see the Chicago-Kent College of Law Bulletin.

Note: The information in this bulletin is subject to change without notice.

Illinois Institute of Technology Bulletin, Volume LXIV, Number 2, March 2001 Published four times a year: two times in April and monthly in November and March by Illinois Institute of Technology, Office of Communications & Marketing, 3300 S. Federal St., Chicago, IL 60616-3793.
Send address changes to Illinois Institute of Technology Bulletin, Illinois Institute of Technology, Office of Communications & Marketing, 3300 S. Federal St., Chicago, IL 60616-3793.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>1</td>
</tr>
<tr>
<td>Calendar</td>
<td>4</td>
</tr>
<tr>
<td>IIT Profile</td>
<td>5</td>
</tr>
<tr>
<td>Admission, Financial Aid and Expenses</td>
<td>11</td>
</tr>
<tr>
<td>Academic Programs</td>
<td>27</td>
</tr>
<tr>
<td>Undergraduate Curricula at IIT</td>
<td>29</td>
</tr>
<tr>
<td>Departmental Curricula</td>
<td>32</td>
</tr>
<tr>
<td>Minors</td>
<td>109</td>
</tr>
<tr>
<td>Special Programs</td>
<td>112</td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>119</td>
</tr>
<tr>
<td>Academic Policies and Procedures</td>
<td>177</td>
</tr>
<tr>
<td>Campus Resources</td>
<td>185</td>
</tr>
<tr>
<td>Officers and Faculty</td>
<td>193</td>
</tr>
<tr>
<td>Maps</td>
<td>219</td>
</tr>
<tr>
<td>Index</td>
<td>221</td>
</tr>
</tbody>
</table>
Calendar

IIT Academic Calendar for Fall

<table>
<thead>
<tr>
<th>Event</th>
<th>Fall 2000</th>
<th>Fall 2001</th>
<th>Fall 2002</th>
<th>Fall 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last day for reinstatement</td>
<td>Aug 8</td>
<td>Aug 7</td>
<td>Aug 6</td>
<td>Aug 5</td>
</tr>
<tr>
<td>Labor Day holiday</td>
<td>Sept 4</td>
<td>Sept 3</td>
<td>Sept 2</td>
<td>Sept 1</td>
</tr>
<tr>
<td>Last day to submit appl. for grad.</td>
<td>Sept 8</td>
<td>Sept 7</td>
<td>Sept 6</td>
<td>Sept 5</td>
</tr>
<tr>
<td>Last day to remove “I” grades</td>
<td>Oct 6</td>
<td>Oct 5</td>
<td>Oct 4</td>
<td>Oct 3</td>
</tr>
<tr>
<td>Last day for official withdrawal</td>
<td>Nov 3</td>
<td>Nov 2</td>
<td>Nov 1</td>
<td>Oct 31</td>
</tr>
<tr>
<td>Adv. registration and advising</td>
<td>Nov 6 - 17</td>
<td>Nov 5 - 16</td>
<td>Nov 11 - 22</td>
<td>Nov 10 - 21</td>
</tr>
<tr>
<td>Classes end</td>
<td>Dec 9</td>
<td>Dec 8</td>
<td>Dec 7</td>
<td>Dec 6</td>
</tr>
<tr>
<td>Final exam period</td>
<td>Dec 11 - 16</td>
<td>Dec 10 - 15</td>
<td>Dec 9 - 14</td>
<td>Dec 8 - 13</td>
</tr>
<tr>
<td>Semester ends</td>
<td>Dec 16</td>
<td>Dec 15</td>
<td>Dec 14</td>
<td>Dec 13</td>
</tr>
<tr>
<td>Commencement*</td>
<td>Dec 17</td>
<td>Dec 16</td>
<td>Dec 15</td>
<td>Dec 14</td>
</tr>
</tbody>
</table>

IIT Academic Calendar for Spring

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration & orientation period</td>
<td>Jan 8 - 11</td>
<td>Jan 14 - 17</td>
<td>Jan 13 - 16</td>
<td>Jan 12 - 15</td>
</tr>
<tr>
<td>MLK, Jr. holiday</td>
<td>Jan 15</td>
<td>Jan 21</td>
<td>Jan 20</td>
<td>Jan 19</td>
</tr>
<tr>
<td>Classes begin</td>
<td>Jan 16</td>
<td>Jan 22</td>
<td>Jan 21</td>
<td>Jan 20</td>
</tr>
<tr>
<td>Last day to submit appl. for grad.</td>
<td>Jan 26</td>
<td>Feb 1</td>
<td>Jan 31</td>
<td>Jan 30</td>
</tr>
<tr>
<td>Last day to remove “I” grades</td>
<td>Feb 23</td>
<td>Mar 1</td>
<td>Feb 28</td>
<td>Feb 27</td>
</tr>
<tr>
<td>Spring vacation</td>
<td>Mar 12 - 17</td>
<td>Mar 18 - 23</td>
<td>Mar 17 - 22</td>
<td>Mar 15 - 20</td>
</tr>
<tr>
<td>Last day for official withdrawal</td>
<td>Mar 30</td>
<td>Apr 5</td>
<td>Apr 4</td>
<td>Apr 2</td>
</tr>
<tr>
<td>Adv. registration and advising</td>
<td>Apr 9 - 20</td>
<td>Apr 15 - 26</td>
<td>Apr 14 - 25</td>
<td>Apr 12 - 23</td>
</tr>
<tr>
<td>Classes end</td>
<td>May 5</td>
<td>May 11</td>
<td>May 10</td>
<td>May 8</td>
</tr>
<tr>
<td>Final exam period</td>
<td>May 7 - 12</td>
<td>May 13 - 18</td>
<td>May 12 - 17</td>
<td>May 10 - 15</td>
</tr>
<tr>
<td>Semester ends</td>
<td>May 12</td>
<td>May 18</td>
<td>May 17</td>
<td>May 15</td>
</tr>
<tr>
<td>Commencement*</td>
<td>May 12</td>
<td>May 19</td>
<td>May 18</td>
<td>May 16</td>
</tr>
</tbody>
</table>

IIT Academic Calendar for Summer

<table>
<thead>
<tr>
<th>Event</th>
<th>Summer 2001</th>
<th>Summer 2002</th>
<th>Summer 2003</th>
<th>Summer 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last day for reinstatement</td>
<td>May 16</td>
<td>May 15</td>
<td>May 14</td>
<td>May 19</td>
</tr>
<tr>
<td>Registration period</td>
<td>May 30 - 31</td>
<td>May 29 - 30</td>
<td>May 28 - 29</td>
<td>June 2 - 3</td>
</tr>
<tr>
<td>Classes begin</td>
<td>June 4</td>
<td>June 3</td>
<td>June 2</td>
<td>June 7</td>
</tr>
<tr>
<td>Last day to submit appl. for grad.</td>
<td>June 8</td>
<td>June 7</td>
<td>June 6</td>
<td>June 11</td>
</tr>
<tr>
<td>Independence Day holiday</td>
<td>July 4</td>
<td>July 4</td>
<td>July 4 - 6</td>
<td>July 3 - 5</td>
</tr>
<tr>
<td>Last day for official withdrawal</td>
<td>July 13</td>
<td>July 12</td>
<td>July 11</td>
<td>July 16</td>
</tr>
<tr>
<td>End of eight-week session</td>
<td>July 28</td>
<td>July 27</td>
<td>July 26</td>
<td>July 31</td>
</tr>
</tbody>
</table>

* tentative
Objective of Education at IIT

IIT's mission is to educate people from all countries for complex professional roles in a changing technological world and to advance knowledge through research and scholarship.

The Colleges of Illinois Institute of Technology

IIT was founded in 1940 through the merger of the Armour Institute of Technology (established in 1890) and Lewis Institute (established in 1895). The Institute of Design joined the university in 1949, and Chicago-Kent College of Law became part of IIT in 1969. Stuart Graduate School of Business was established in 1970.

College of Architecture

The program in architecture was established at Armour Institute of Technology, one of IIT's predecessors, in 1895. In 1938, the program came under the directorship of the world-renowned architect and educator Ludwig Mies van der Rohe. The college is housed in S.R. Crown Hall, one of Mies' most significant buildings and a major contribution to Chicago's rich architectural heritage. The college emphasizes applied studio work under the tutelage of a faculty of practicing architects; the study of architectural theory; interdisciplinary learning; and foreign study.

Armour College of Engineering and Science

Armour College of Engineering and Science is named for IIT's predecessor, Armour Institute of Technology, which was established in 1892 on the site of the present IIT Main Campus. The following departments comprise Armour College: Applied Mathematics; Biological, Chemical and Physical Sciences; Chemical and Environmental Engineering; Civil and Architectural Engineering; Computer Science; Electrical and Computer Engineering; the Lewis Department of Humanities; Mechanical, Materials and Aerospace Engineering; and Social Sciences. The college is also home to the Pritzker Institute of Medical Engineering, the Manufacturing Productivity Center, and the Manufacturing Technology and Management Program.

Chicago-Kent College of Law

The Chicago-Kent College of Law is the second oldest law college in Illinois. When Chicago-Kent joined the university in 1969, IIT became the first major institute of technology to include law among its disciplines. Chicago-Kent offers programs leading to the degrees of Juris Doctor and Master of Laws. Although the college does not offer an undergraduate degree, it offers a specialized minor to undergraduates in double-degree programs. The Chicago-Kent Library is open to IIT students conducting research in relevant fields.

Institute of Design

The Institute of Design, founded by Laszlo Moholy-Nagy in 1937 and named the “New Bauhaus” after Germany’s International School of Design, merged with IIT in 1949. The Institute of Design is the first U.S. school to offer a Ph.D. in design; its program also includes a Master of Science in Design and a Master of Design.

Institute of Psychology

Established in 1995, the Institute of Psychology was created from the Department of Psychology, previously housed within IIT’s Lewis College of Liberal Arts. It is noted for its applied graduate programs in clinical, industrial/organizational and rehabilitation psychology. It offers an undergraduate program that is focused on psychology as a science linked to the professions.
IIT Profile

Stuart Graduate School of Business

The Stuart Graduate School of Business was established in 1970 from a gift from the estate of IIT alumnus and Chicago financier Harold Leonard Stuart. Although its primary educational focus is master’s- and doctoral-level education, the Stuart Graduate School offers courses in economics, marketing and management for undergraduates. The school houses the Center for Research on Industrial Strategy and Policy and the Center for Research on the Impact of Information Systems.

The Undergraduate College

The Undergraduate College coordinates the programs of the undergraduate curriculum offered by the departments and colleges of the university. The college sets minimum standards for all undergraduate students, represents the university in national forums for undergraduate education across the university, and serves as an advocate for undergraduate education across the university. The dean of the Undergraduate College co-chairs the Undergraduate Studies Committee.

The Graduate College

The Graduate College coordinates the programs of advanced study offered by the departments and colleges of the university. The college is a home to such programs as the Interprofessional Projects (IPRO) Program, the Leadership Academy, and the Ed Kaplan Entrepreneurial Studies Program that help to prepare students for the complexities of professional practice. Moreover, the Academic Resource Center, the Career Development Center, the Center for Multicultural Programs, and the Office of Educational Services report to the dean of the Undergraduate College.

IIT Campuses

IIT’s 120-acre Main Campus is located on the Near South Side of Chicago. The master plan of the Main Campus and many of its 50 buildings were developed by Ludwig Mies van der Rohe, one of the 20th century’s most influential architects. IIT Research Institute (IITRI) has its headquarters on the IIT Main Campus and operates facilities at 16 sites throughout the country. The VanderCook College of Music, an independent institution, is also located on the Main Campus. The Main Campus is easily accessible by public transportation, and a shuttle bus provides transportation between the Main and Downtown campuses.

The Chicago-Kent College of Law, Stuart Graduate School of Business, and the Department of Social Sciences’ Master of Public Administration programs are housed in the Downtown Campus in the West Loop business district, a short walk from the Union and Ogilvie train stations. The Institute of Design is in the North Loop business district, near the Merchandise Mart and a short walk from the River North art gallery district. IIT’s Daniel F. and Ada L. Rice Campus, located in west-suburban Wheaton, offers evening and Saturday classes leading to selected undergraduate and graduate degrees.

The university’s fifth site is IIT’s Moffett Campus, which houses the National Center for Food Safety and Technology, a multidisciplinary food safety research facility in southwest-suburban Bedford Park. The Moffett Campus, created by a gift from CPC International, Inc., has enabled the university to develop master’s degree and certificate programs in food safety and technology.

Students may also take classes through the William F. Finkl Interactive Instructional Network (HIV), which links classroom studios on campus with remote TV receiving sites. Some classes are also available on the Internet through IIT Online. IITV’s talk-back feature permits students in remote classrooms to participate in class discussions. IIT has arrangements with several educational institutions and private companies throughout Chicagoland.
Accreditation

IIT is accredited by the North Central Association of Colleges and Secondary Schools (30 N. LaSalle St., #2400, Chicago, IL 60602-2504). Specific professional curricula are accredited by their respective professional associations and accrediting agencies. The professional accreditation of specific degree programs is noted with the description of the degree requirements.

A Snapshot of the IIT Community

Enrollment (Fall 2000)

<table>
<thead>
<tr>
<th></th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate</td>
<td>1,736</td>
</tr>
<tr>
<td>Graduate</td>
<td>3,124</td>
</tr>
<tr>
<td>Law</td>
<td>1,143</td>
</tr>
<tr>
<td>Total</td>
<td>6,003</td>
</tr>
</tbody>
</table>

Student Demographics

<table>
<thead>
<tr>
<th></th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>68%</td>
</tr>
<tr>
<td>Female</td>
<td>32%</td>
</tr>
<tr>
<td>Minority (includes African American, Asian American, Hispanic American, and Native American)</td>
<td>20%</td>
</tr>
<tr>
<td>International</td>
<td>30%</td>
</tr>
<tr>
<td>Countries of Origin</td>
<td>98%</td>
</tr>
<tr>
<td>Student/Faculty Ratio</td>
<td>12:1</td>
</tr>
</tbody>
</table>

Degrees Awarded 1999-2000

<table>
<thead>
<tr>
<th></th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor’s</td>
<td>275</td>
</tr>
<tr>
<td>Master’s and Professional</td>
<td>717</td>
</tr>
<tr>
<td>Law</td>
<td>324</td>
</tr>
<tr>
<td>Ph.D.</td>
<td>78</td>
</tr>
<tr>
<td>Total</td>
<td>1,394</td>
</tr>
</tbody>
</table>
Admission, Financial Aid and Expenses

Undergraduate Admission ... 13
Financial Aid .. 19
Expenses ... 23
Payments and Refunds... 25
Living Expenses .. 26
Undergraduate Admission

Classification of Students

Undergraduate admission to IIT is processed in two offices, based on a student’s classification. Students should be aware of the correct office for application materials.

All full-time, degree-seeking freshmen or transfer students should contact:

Office of Undergraduate Admission
10 W. 33rd St.
Perlstein Hall 101
Chicago, IL 60616
Telephone: 312.567.3025
Outside Chicago: 1.800.448.2329
Fax: 312.567.6939
E-mail: admission@iit.edu
Online application: http://www.iit.edu/admission/undergrad

All part-time degree and non-degree students, special-status students, summer school students, and re-admit applicants should contact:

Office of Educational Services
3300 S. Federal St.
Main Building 101
Chicago, IL 60616
Telephone: 312.567.3300
Fax: 312.567.3302
E-mail: edsvcs@iit.edu
Web site: www.iit.edu/~edserve
Online application: http://edserve.iit.edu

Full-Time Freshman Admission

The Office of Undergraduate Admission is responsible for admission decisions for all first-year (freshmen and transfer), full-time, degree-seeking undergraduates. To be full-time, a student must register for 12 or more credit hours each semester.

Office of Undergraduate Admission
10 W. 33rd St.
Perlstein Hall 101
Chicago, IL 60616
Telephone: 312.567.3025
Outside Chicago: 1.800.448.2329
Fax: 312.567.6939
E-mail: admission@iit.edu
Online application: http://www.iit.edu/admission/undergrad

Application as a Freshman

IIT admits freshmen students on a rolling basis beginning in September, with most admission decisions having been made by mid-March. Students will be admitted after March if there are spaces available.

Some honors programs and some scholarships have January deadlines. Students need to adhere to those deadlines stated in the admission or scholarship applications. Students have until May 1 (National Candidates’ Reply Date) to accept IIT’s offer of admission. Students admitted after May 1 will have two weeks from the receipt of their admission and/or financial aid award letters to respond to IIT’s offer.
Obtaining Freshman Application

Freshman applicants must submit a completed application, application fee or fee waiver, transcripts of all high schools attended, transcripts from all colleges attended (when applicable), standardized test scores, (ACT or SAT I) and a letter of recommendation. The freshman application may be obtained by contacting the Office of Undergraduate Admission or from the following online sources:

IIT online application =
www.iit.edu/admission/undergrad

International students should request the International Student Application.

Standardized Test Scores for Freshman Applicants

All students are required to submit scores from either the College Entrance Examination Board’s Scholastic Aptitude Test (SAT1) or The American College Test (ACT). The tests may be taken at any time, but preferably by the December testing date in the high school senior year. Applicants for admission to the spring semester must have taken the SAT1 or ACT by the preceding November. IIT recommends SAT2 tests in math and science, but does not require SAT2 test scores for admission or scholarship applications.

High School Requirements for Freshman Applicants

Graduates from an accredited high school applying for admission must present evidence that they have completed a minimum of 16 units of high school work. Most admitted students exceed this minimum. A unit may be defined broadly as the study of a major subject for one academic year in high school.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Required</th>
<th>Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>4 years</td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td>4 years *</td>
<td>Calculus</td>
</tr>
<tr>
<td>Laboratory Science</td>
<td>2 years **</td>
<td>3 years</td>
</tr>
</tbody>
</table>

* Material should include depth in algebra, geometry, trigonometry, analytic geometry and pre-calculus skills.
** Material should include physics.

Transfer of College-Level Credit for Freshman Applicants

IIT recognizes the CEEB Advanced Placement Program and encourages student to take A.P. examinations and have the scores sent to IIT. Acceptable credit and placement varies by subject.

International Baccalaureate Program

Students holding an International Baccalaureate (I.B.) diploma or who have successfully completed I.B. examinations may be awarded credit according to the following policies. College credit will be awarded for higher-level (HL) exams with a score of 4 or better. A maximum of 10 hours of credit for each HL exam can be awarded.

No credit is granted for work completed at the subsidiary level (SL). Scores should be sent to the Office of Undergraduate Admission.

College Coursework

IIT will accept college coursework taken while still in high school from other accredited universities and colleges, provided that the courses are comparable in nature, content and level to those offered at IIT. Grades must be equivalent to a “C” or higher. Grades of “C-” are not acceptable for transfer credit. A maximum of 36 semester hours will be accepted. Transcripts of all college work are required to be submitted as part of the application for admission to the Office of Undergraduate Admission, regardless of the transferability of credits.
New-Student Financial Aid

Financial aid for all admitted freshmen, new transfer and continuing students is processed by the IIT Office of Financial Aid. IIT offers both need and merit-based aid to domestic students. To be considered for need-based aid and merit scholarships at IIT, students must submit a Free Application for Federal Student Aid (FAFSA) to the U.S. Department of Education. IIT’s FAFSA code is 001691. The priority date for financial aid consideration is March 15. Financial aid and scholarship deadlines are described in the IIT application for admission. International students do not submit a FAFSA. Each admitted international student is reviewed for IIT scholarship eligibility.

Decision to Matriculate

To accept IIT’s offer of admission, a student needs to return the Enrollment Confirmation Form and a non-refundable $100 matriculation deposit. The deposit is credited to the student’s account and will go toward the cost of attendance. The Enrollment Confirmation Form is sent to every admitted student and may be returned at any time, but students have until May 1 to submit their confirmation forms and deposits. Students admitted after May 1 will have two weeks from the time they are notified of their admission and/or financial aid award to respond to IIT’s offer.

Immunization Requirement

In accordance with Illinois law, all students born on or after January 1, 1957, and enrolling at IIT for the first time after July 1, 1989, must supply health-provider documented evidence of vaccination for diphtheria, tetanus, measles, rubella and mumps. Transfer students are considered first-time enrolled students. Students enrolling for the first time during a summer session may be permitted to enroll in the subsequent fall term before providing proof of immunization. Students who wish to enroll only in one class per semester or via IITV at corporate sites may file a written request for an exemption. Exemption from one or more of the specific requirements may also be granted based on documented medical or religious reasons. A student who fails to provide acceptable evidence of immunization shall be prevented from registering for classes in the next semester. Questions regarding the immunization policy should be directed to IIT’s Counseling and Health Service at 312.808.7199.

Full-Time Transfer Admission for Domestic Students

Application as a Transfer Student

The Office of Undergraduate Admission is responsible for admission decisions for full-time transfer students. Full-time status requires that students enroll in a minimum of 12 credit hours each semester. Transfer students may apply for the fall or spring term in all majors except architecture, which is a fall-entry program only. IIT admits transfer students on a rolling basis. The deadline to apply for the fall term (beginning late August) is July 1; for the spring term (beginning mid-January), the deadline is November 1. Earlier deadlines apply to international students and are listed in the International Application for Admission.

Obtaining an Application

The transfer application may be obtained by contacting the Office of Undergraduate Admission or by downloading the online application from: www.iit.edu/admission/undergrad

Students must submit the IIT Transfer Application, application fee or fee waiver, transcripts from all colleges and universities attended, a personal statement, and a letter of recommendation to the IIT Office of Undergraduate Admission.
Requirements for Transfer

Transfer applicants must be in good academic standing at their previous colleges to be considered for admission to IIT. Admission is based upon a cumulative GPA and individual grades in all classes that apply to the major selected. A minimum cumulative GPA of 3.0 is expected for transfer consideration. Students on academic probation, or who have been dismissed for academic or other reasons, will not be considered for transfer. Students must also be in good financial standing at all previous colleges attended.

Transfer applicants with less than 30 hours of transferable graded college coursework must submit high school transcripts and SAT1 or ACT scores as part of their application.

Transfer Credit

Official credit evaluations are completed only after a student is admitted to IIT.

Courses may be acceptable for transfer from accredited colleges and universities, provided they are comparable in nature, content and level to those offered at IIT. Credit may also be accepted, based on appropriate documentation, test scores and agency recommendations for CLEP (see page 180), Dantes and military experience. IIT, however, does not grant credit for vocational courses or life/work experience. In addition, technology courses will not be accepted in any engineering program.

A maximum of 68 applicable semester hours of transfer credit is permitted from a two-year college. There is no maximum number of hours of transfer credit from a four-year college; however, the final 45 semester hours must be completed at IIT. (See page 183.)

Transfer credit will be accepted for courses completed with the equivalent of a grade “C” or better. A grade of “C-” is not acceptable for transfer credit. In certain instances, the academic department must approve transfer credit if a long period of time has elapsed since the course was completed.

Transfer articulation agreements that list course equivalents are available for most two-year Chicago-area colleges from the Office of Undergraduate Admission and the Office of Educational Services.

Transfer-Student Financial Aid

Financial aid for all admitted freshmen, new transfer and continuing students is processed by the IIT Office of Financial Aid. IIT offers both need- and merit-based aid. To be considered for need-based aid and merit scholarships at IIT, students must submit a Free Application for Federal Student Aid (FAFSA) or a renewal FAFSA to the U.S. Department of Education. IIT’s FAFSA code is 001691. The priority date for financial aid consideration is March 15. Financial aid and scholarship information is included with the IIT application for admission. International transfer students do not submit a FAFSA. Each admitted international student is reviewed for IIT scholarship eligibility.

Decision to Matriculate

To accept IIT’s offer of admission, a student must return the Enrollment Confirmation Form and a non-refundable $100 matriculation deposit. The deposit is credited to the student’s account and will go toward the cost of attendance. The Enrollment Confirmation Form is sent to every admitted student.
Immunization Requirement

In accordance with Illinois law, all students born on or after January 1, 1957, and enrolling at IIT for the first time after July 1, 1989, must supply health-provider documented evidence of vaccination for diphtheria, tetanus, measles, rubella and mumps. Transfer students are considered first-time enrolled students. Students enrolling for the first time during a summer session may be permitted to enroll in the subsequent fall term before providing proof of immunization. Students who wish to enroll only in one class per semester or via IITV at corporate sites may file a written request for an exemption. Exemption from one or more of the specific requirements may also be granted based on documented medical or religious reasons. A student who fails to provide acceptable evidence of immunization shall be prevented from registering for classes in the next semester. Questions regarding the immunization policy should be directed to IIT's Counseling and Health Service at 312.803.7199.

Part-Time Admission

Office of Educational Services
3300 S. Federal Street
Main Building 101
Chicago, IL 60616
Telephone: 312.567.3300
Fax: 312.567.3302
E-mail: edsvcs@iit.edu
Online application: http://edserve.iit.edu

Part-Time Degree-Seeking Students

Students who wish to enroll in less than 12 credit hours per semester are classified as part-time students. All undergraduate programs, except architecture, can be completed on a part-time basis, with both day and evening courses being offered. However, only the following degree programs can be completed in their entirety through evening classes:

- Chemical Engineering
- Computer Engineering
- Computer Science
- Computer Information Systems
- Electrical Engineering
- Manufacturing Technology and Management
- Mechanical Engineering.

The graduation requirements for full-time and part-time students are identical.

Application as a Degree-Seeking Part-Time Student

Part-time students must meet the same admission requirements as full-time students. Students with previous college work will be evaluated by the same criteria used for full-time undergraduate transfer admission. (See page 16.) Students who have less than 30 hours of transferable college coursework may be required to submit high school transcripts and standardized test scores.

Students who have not attended college must meet the high school requirements listed on page 14 and must submit high school transcripts and standardized test scores.

Prospective students submit the completed application, application fee or fee waiver, and official transcripts of all coursework to the Office of Educational Services.
Application as a Non-Degree-Seeking Student

Applicants who are taking courses for the following reasons will be limited to part-time enrollment:
• taking courses for professional development;
• taking courses prior to being admitted to a graduate program; or
• taking courses to transfer to another institution.

A non-degree-seeking student must be admitted to IIT. Admission is based on prerequisite coursework or other preparation necessary for the intended course. Non-degree seeking students follow the same application procedures as part-time degree-seeking students.

Campus Locations for Part-Time Students

Part-time students can take courses at either the Main Campus or the Daniel F. and Ada L. Rice Campus in Wheaton, a Chicago suburb. The Main Campus has the most extensive offering of day and evening classes. The Rice Campus offers evening classes, most of which start at 6:25 p.m. The majority of courses taught at the Rice Campus are 400-level mechanical engineering, electrical engineering and computer science courses, as well as 300- and 400-level manufacturing technology and management courses.

IITV, a live talk-back system that links classroom studios with remote TV receiving sites, is another option for the part-time student. For more information about IITV, see the IIT Bulletin: Schedule of Classes.

Summer School Admission

Students who attend another college or university and who wish to enroll for summer courses at IIT with the intention of transferring the credits to their home institution must submit the following to the Office of Educational Services:
• a Summer School Application;
• a $30 application fee; and
• a transcript and/or a letter of good standing that indicates completion of the prerequisites for the requested courses at IIT.

Additionally, students should check with their home institutions to determine the equivalencies for specific courses and the policies and procedures required to transfer IIT courses.

Reinstatement of Undergraduate Students

Former IIT students who wish to re-enter IIT as full-time or part-time undergraduate students must contact the Office of Educational Services for an Application for Undergraduate Reinstatement. No fee is required. The application and all supporting documents must be submitted before the deadline referred to on the IIT Calendar on page 4. Students who have attended other schools since their latest attendance at IIT must submit official transcripts from all colleges or universities attended.

International students with a student visa requesting reinstatement must contact the International Center in addition to submitting the application for reinstatement.
Financial Aid

Comprehensive Financial Aid Program

IIT administers a comprehensive financial aid program, which includes federal, state and institutional funds for full-time and part-time undergraduate students. Federal programs include grants, loans and work-study employment. State programs include grant and scholarship funds. Most federal and state funds are based on demonstrated financial need, with the exception of merit scholarships. Institutional funds include need-based grants and loans, as well as merit scholarships based on academic, athletic and service achievements. IIT uses the formula established by the U.S. Congress to determine financial need for assistance. IIT offers limited academic scholarship assistance to international students.

Determining Financial Need for Assistance

Financial need is the difference between a student's total annual cost of attending IIT and the amount the student and the student's family is expected to contribute toward that cost of education. The total cost of attendance at IIT includes tuition and mandatory fees, room and board, books and supplies, transportation, and personal expenses. The amount that the student and family is expected to contribute is called the expected family contribution (EFC). The U.S. Congress has established the formula used to calculate the EFC. The EFC is subtracted from the cost of education, and what is left over is considered to be the demonstrated need for financial assistance. One of the principles of need-based assistance is that students and their families are expected to help pay some of the cost of education.

Student Eligibility Requirements to Receive Financial Assistance

Students must be U.S. citizens or eligible non-citizens and be enrolled in a degree-seeking program for at least half-time (six credit hours or more per semester).

Application Process

All students applying for financial assistance need to complete the Free Application for Federal Student Aid (FAFSA). This application is available after December 1 and should be filed by the student as soon as possible after January 1 of the academic year in which the student is attending college. (The IIT Title IV School Code is 001691.) The priority date for financial aid consideration at IIT is March 15. All financial assistance is awarded on an annual basis. Students should be aware that a FAFSA must be filed each academic year. The amount of financial aid that a student receives each year depends on demonstrated financial need and the availability of funds. Students applying for financial aid will be required to submit tax information upon request.

Freshman Students

The Free Application for Federal Student Aid (FAFSA) for freshmen entering IIT is available from high schools, IIT’s Office of Undergraduate Admission, the IIT Student Services Center, or online at www.fafsa.ed.gov. The priority date for financial aid consideration is March 15; therefore, new students should not wait for a final admission decision before filing the FAFSA. International students do not submit a FAFSA.

Transfer Students

All new transfer students will file either a renewal or an original FAFSA. The priority date for financial aid consideration is March 15; therefore, new transfer students should not wait for a final admission decision before filing the FAFSA.

Continuing Students

All continuing students must submit either a renewal or original FAFSA to the U.S. Department of Education by March 15, which is the priority date for financial aid consideration. FAFSAs are available at the Student Services Center or online at www.fafsa.ed.gov.
Federal Financial Aid Programs

Federal Pell Grant

A Federal Pell Grant is a federal grant that does not have to be repaid. Pell Grants are awarded only to undergraduate students who have not earned a bachelor's or professional degree. Pell Grants are awarded based on demonstrated financial need. Students apply for a Pell Grant by filing the FAFSA. All students who file the FAFSA receive a Student Aid Report (SAR). If a student does not qualify for a Pell Grant, he or she may still be eligible for other forms of financial aid. The Pell Grant levels for this academic year have not yet been set, but the maximum Pell Grant award for the 2000-2001 academic year was $3,300 for a full-time student attending for a full year. Students can designate IIT as a SAR recipient by using the code 001691 in section H of the FAFSA.

Federal Supplemental Educational Opportunity Grant (FSEOG)

An FSEOG is a federal grant that does not have to be repaid. This grant is for undergraduate students who demonstrate exceptional financial need. Students apply for the FSEOG by filing the FAFSA.

Federal Perkins Loan

A Federal Perkins Loan is a low-interest (5 percent) federal loan for both undergraduate and graduate students with exceptional financial need. IIT is the lender, and the loan is made with government funds. There is no interest charged while the student is attending school. When a student leaves school or drops below half-time attendance, there is a nine-month interest-free grace period before the student begins repayment. All repayments are made to IIT on a quarterly basis. Students apply for a Perkins Loan by filing the FAFSA.

Federal Work Study Program (FWSP)

The FWSP provides salaries for jobs for undergraduate and graduate students with demonstrated financial need. Students awarded FWSP funds can earn money to help pay education expenses. Students can work either on- or off-campus. Off-campus jobs will be with private, non-profit organizations or public agencies that encourage community service work. Students awarded FWS are paid at least the current federal minimum wage or higher, depending on the type of work performed. Students are paid by the hour and receive a paycheck. FWS students are not permitted to work more than 20 hours per week during the academic year and may not work during their scheduled class times. Students apply for FWS by filing the FAFSA.

Federal Family Education Loan Program (FFELP)

The FFELP loan program includes the Stafford subsidized and unsubsidized loan programs for undergraduate and graduate students, as well as the Parent Loan for Undergraduate Students (PLUS) Program. The Stafford Loan Program provides low-interest loans to assist students with paying educational costs. The interest rate for new loans is set on July 1 and will vary annually. The maximum rate is 8.25 percent. These loans must be repaid over a period of time after a student leaves school. The funds for these loans come from banks, credit unions or other participating lenders.

The Subsidized Stafford Loan is awarded based on demonstrated financial need, and students do not pay interest on the principal while they are in school. The Unsubsidized Stafford Loan is not awarded based on demonstrated financial need; however, interest is charged from the time that the loan funds are disbursed to the student. Students have the option of paying the interest or having the interest added onto the principal. Fees of up to 4 percent are charged on each loan, and these fees are deducted before a student receives the loan funds.

PLUS loans enable parents with a good credit history to borrow money to help pay education expenses for their dependent undergraduate student. The interest rate is set on July 1 and varies annually. The maximum rate is 9 percent. Students apply for all FFELP loans by filing the FAFSA.
Illinois Student Assistance Commission (ISAC) Financial Aid Programs

Monetary Award Program (MAP)
This program is for undergraduate Illinois residents and provides state grants that do not have to be repaid. To receive a MAP grant, a student must demonstrate financial need, be a resident of Illinois, and be enrolled at an Illinois institution. The maximum grant for 2000-2001 was $4,740 for a full-time student attending a full academic year. The MAP grant can only be applied toward tuition and mandatory fees. Students can receive 10 semesters of the MAP grant. Students apply for the MAP grant by filing the FAFSA. ISAC notifies students of their award.

Merit Recognition Scholarship (MRS)
The MRS program provides a one-time $1,000 state grant to qualified Illinois high school students who rank in the top 5 percent of their class at the end of the seventh semester in high school. Demonstrated financial need is not a factor in determining MRS recipients. The top 5 percent of seniors from all Illinois high schools are automatically considered for the MRS program. Once ISAC selects all eligible recipients, an MRS application is sent to the student. The student completes the application and submits it to the IIT Office of Financial Aid.

Illinois Incentive for Access Program (IIA)
The IIA Program provides a one-time state grant of up to $500 for freshmen who have an expected family contribution (EFC) of zero, which is determined by filing the FAFSA. A student must be enrolled at least half-time in an Illinois institution, be an Illinois resident, and have not yet received a bachelor’s degree.

IIT-Funded Financial Aid Programs
Most IIT students receive some form of financial assistance. All students who submit a FAFSA are considered for all federal, state and institutional financial aid for which they qualify. IIT grants and loans are funded by the university and are awarded on the basis of demonstrated financial need. In addition, each year a number of talented students receive IIT scholarships that are based on merit.

Transfer-Student Scholarships
Merit scholarships of up to half tuition are awarded to transfer students who have strong college records. Awards are renewable based on grade point average at IIT and reasonable academic progress. All admitted students are reviewed for eligibility.

Athletic Scholarships
As a National Association of Intercollegiate Athletics (NAIA) member, IIT awards athletic scholarships based solely on athletic ability, regardless of need. In compliance with NAIA rules, athletic scholarships are officially made by financial aid officers, upon recommendation of the athletic director. Students with demonstrated financial need will be reviewed for federal, state and other IIT financial aid for which they are eligible.

IIT Endowed Scholarships
These scholarships are made possible through donations to IIT by individuals, corporations and foundations. First-year IIT students will be reviewed by the Office of Undergraduate Admission for scholarship eligibility. Continuing students will be reviewed by the Office of Financial Aid.
IIT Loans

Loans are available to undergraduate students demonstrating financial need and will be listed on a student’s financial aid award notification letter.

Employment

Employment for students who are not awarded Federal Work Study (FWS) is available on and off campus in the greater Chicago area. On-campus jobs are advertised at www.cdc.iit.edu. Off-campus jobs are also advertised by the Career Development Center. This office also assists students in finding summer employment and permanent jobs after graduation.

ROTC Programs

IIT offers scholarship supplements to admitted students who have been awarded U.S. Air Force, Army or Naval ROTC scholarships. To be considered, students must send a copy of their ROTC Scholarship Award letter to the Office of Undergraduate Admission and to the Army, Air Force or Naval ROTC offices on IIT’s campus.

Veterans’ Educational Benefits

Veterans enrolling at IIT for the first time should obtain VA. application forms from the Office of Student Records and Registration, Room 104, Main Building, 3300 S. Federal St., Chicago, IL 60616 (telephone: 312.567.6741 or e-mail: student.services@iit.edu.) Subsequent applications will be processed by the university’s Veterans Affairs representative upon notification of intentions to re-enroll.

Continued Eligibility for Financial Assistance

All students receiving federal and/or state financial aid funds must demonstrate reasonable academic progress toward graduation from IIT. Reasonable academic progress includes both a satisfactory cumulative and major grade point average and sufficient credit hours earned each semester toward the completion of a degree program. IIT has established a Reasonable Academic Progress Policy in compliance with federal and state regulations. Failure to comply with IIT’s Reasonable Academic Progress Policy will lead to the student’s losing eligibility for financial assistance.

Additional Information

All financial aid awards and scholarships for freshmen, transfer, continuing undergraduate, and all graduate students (excluding law and business students) are processed by the IIT Office of Financial Aid. Students should submit all information regarding financial assistance to: Office of Financial Aid, 3300 S. Federal St., Chicago, IL 60616 (telephone 312.567.7219). The office is open from 8:30 a.m. to 5 p.m., Monday through Friday.
Expenses

All expenses listed herein are for the 2001-02 academic year and are subject to change without notice. The university regrets that continually rising costs do not permit it to guarantee that published charges will not change. Students and parents are cautioned to anticipate periodic increases in the years ahead.

Admission Application Fee

All applications for full-time undergraduate admission from U.S. citizens (freshmen and transfer students) or international students must be accompanied by a non-refundable fee of $30 or a fee waiver.

Undergraduate Tuition

Tuition for full-time undergraduates is $18,600 for the 2001-02 academic year. Part-time undergraduate students (those taking fewer than 12 credit hours) will be charged at the rate of $585 per credit hour.

Enrollment Deposit

Each student admitted as a full-time degree-seeking undergraduate student is required to make a $100 non-refundable enrollment deposit, which is credited toward the student’s cost of attendance and holds a place in class for the initial semester of enrollment.

Student Health Insurance

All students are required to purchase the basic student health insurance policy or to submit proof of equivalent insurance. This requirement applies to students who are:
• registered for 12 or more credit hours;
• participants in the co-op program;
• considered full-time by their departments;
• research or teaching assistants; or
• occupants of IIT residence halls.

A charge for the basic insurance program will be added to a student’s tuition and fees by the third billing cycle (usually eight to nine weeks into the semester) unless he or she submits a valid declination to the plan’s underwriters by the dates listed in the Insurance Brochure issued at registration. Once a student declines the insurance, he or she does not have to decline it again in subsequent, continuously enrolled years. Other students, spouses and dependents of students may participate in the student health program. Further details are available from Counseling and Health Service in Farr Hall, 312.808.7101.

Student Activity Fee

A student activity fee of $50 for full-time students and $2.50 per credit hour for part-time students will be charged each semester. This applies only to students at the Main Campus. The student activity fee provides funding to registered student organizations in support of co-curricular activities. The fund is administered by the Student Leadership Committee.
Parking Fee

All students parking on campus must register their cars with the Public Safety Department and pay a parking fee. For the 2000/01 academic year, the parking fee was $85 for the full academic year. Students authorized to park at IIT will receive windshield decals.

Special Fees

<table>
<thead>
<tr>
<th>Service</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late graduate application</td>
<td>$ 50.00</td>
</tr>
<tr>
<td>Proficiency examination (per credit hour)</td>
<td>100.00</td>
</tr>
<tr>
<td>Returned check fee</td>
<td>35.00</td>
</tr>
<tr>
<td>Late registration</td>
<td>$ 100.00</td>
</tr>
<tr>
<td>Budget payment plan fee</td>
<td>35.00</td>
</tr>
<tr>
<td>Deferred payment plan fee</td>
<td>50.00</td>
</tr>
<tr>
<td>Student insurance</td>
<td>566.00</td>
</tr>
<tr>
<td>Comprehensive insurance</td>
<td>793.00</td>
</tr>
</tbody>
</table>

Books and Supplies

Books and other supplies are available at Follett’s Commons Bookstore. Costs differ widely, depending upon the field of study. Most students can expect to spend approximately $1,000 per year for books and supplies (exclusive of drafting equipment and similar one-time purchases). Students in the College of Architecture may spend less on books but substantially more on supplies.
Payments and Refunds

Students must pay their balance due for each semester before classes begin. Any student who is delinquent in payment of tuition or other fees, or against whom the university holds a record of indebtedness, is not given a diploma, a certificate of scholastic standing, or a copy of his or her transcript until such indebtedness has been fully paid. While indebted to the university, students are not allowed to register or attend classes for an ensuing semester. The university may effect the withdrawal of any student who, through oversight, has been allowed to register contrary to this regulation.

Students may pay using one of the IIT-approved payment plans described in the IIT Bulletin: Schedule of Classes, credit card (Visa, MasterCard or Discover), check or money order. Payment may be made in person at the IIT Cashier's Office in the Main Building; by mail to Office of the Bursar, Illinois Institute of Technology, PO. Box 95152, Chicago, IL 60694; or online at www.enrollment.iit.edu.

Institutional Refund Policy

Students should consult the current Schedule of Classes for the approved refund schedule.

Refunds of Tuition

No tuition will be charged and a full refund will be made on any amounts paid upon application supported by proof as necessary, under the following circumstances:

• if a course for which the student is registered is canceled by the university; or

• if a student's serious injury causes incapacity or a student's death occurs.

Under other exceptional circumstances, such as withdrawal for involuntary military service, serious illness, or action by the university, consideration may be given for a refund or credit for unused tuition upon written request to the bursar.
Living Expenses

Unmarried Students

The university's residence halls provide facilities for room and board for undergraduate and graduate men and women. First-year students not living with their families must live in the residence halls or in fraternity houses. Exceptions to this policy may be granted by the director of housing. Housing for first-year students is guaranteed through July 1. Residence hall contracts are made for the full academic year, from the beginning of orientation in August until commencement in May. The charges for room and board for 2001-02 range from $5,515 to $7,305 for an academic year. When a student applies for housing accommodations, an itemized list of available housing facilities and rates will be furnished.

Meals

Students living in residence halls contract for a variety of meal plans. Meal plans and meals on a cash basis are available to non-residents.

Housing Deposit Fee

An initial $300 nonrefundable payment, which applies in full to charges for room and board, must be submitted to the director of housing by July 1 for fall semester applicants or December 1 for spring semester applicants. One-half of the room and board charge for the academic year is payable each semester.

Commuting Students

A student living at home and commuting will spend an estimated annual average of $2,000 on living costs at home and for meals on campus, and approximately $1,800 for travel.

Miscellaneous Expenses

Miscellaneous personal and recreational expenses are estimated at $650 for the academic year. These figures are used in computing the official financial aid budget.

Married Students

There are 356 living units in four high-rise apartment buildings on campus. These units range from efficiency to three-bedroom apartments. Leases are available to married students and single full-time graduate students if space is available. Rentals for unfurnished apartments, including all utilities except telephone, range from approximately $500 to $988 per month. Applications for campus housing should be submitted to the director of housing well in advance. A $35 non-refundable application fee is required when applying for an apartment.
Academic Programs

Undergraduate Curricula

Undeclared Majors .. 29
General Education Requirements 30
Special Academic Requirements 31

Departmental Curricula

Applied Mathematics ... 32
Architecture.. 34
Biological, Chemical and Physical Sciences 38
Stuart Graduate School of Business 48
Chemical and Environmental Engineering 49
Civil and Architectural Engineering 58
Computer Science ... 65
Institute of Design ... 70
Electrical and Computer Engineering 71
Lewis Department of Humanities 78
Manufacturing Technology and Management....... 83
Mechanical, Materials and Aerospace Engineering 85
Institute of Psychology ... 91
ROTC: Air Force Aerospace Studies 97
ROTC: Military Science (Army) 100
ROTC: Naval Science .. 103
Social Sciences ... 106

Minors ... 109

Special Programs

Double-Degree Programs ... 112
Study Abroad ... 115
Post-Baccalaureate Certificate and Certificate Programs ... 116
Premedical Programs ... 117
Reserve Officer Training Corps 118
VanderCook College of Music 118
Undergraduate Curricula at IIT

IIT combines excellence in academic preparation for professional careers with opportunities for practical experience in the major branches of engineering, the sciences, mathematics, architecture, computer science and liberal arts. This section lists the general education requirements of the university. Specific degree requirements are described in the departmental listings. Minors are listed on page 104.

Undeclared Majors

Students who are unsure of their career choices may enter IIT as undeclared or open majors. During the first year of study, undeclared majors take required general education courses in science, mathematics, computer science, humanities and social science. These courses provide the foundation for nearly all of IIT’s major programs. Because general education courses apply to all majors, students may wait as late as the sophomore year to declare their respective majors and can still graduate on time.
General Education Requirements

The general education program is designed to ensure that all IIT graduates have a basic understanding of certain essential areas of knowledge. The general education program sets minimal requirements. General education requirements may not be waived, nor will substitutions be permitted, without the approval of the academic associate dean. Approval will be granted only to individual students, and then only under extraordinary circumstances. Most departments of major study require additional courses in these areas, which are stated under the individual major degree requirements.

A. Basic Writing Proficiency Requirement:
Students must take the IIT English Proficiency Examination before beginning classes at IIT. Within their first year at IIT, students who do not pass the IIT English Proficiency Examination must demonstrate basic writing proficiency by passing composition course at IIT. This requirement applies to all students enrolling for an undergraduate degree.

2. Social or Behavioral Sciences: a minimum of nine credit hours. Courses that satisfy this requirement are marked with an (S) in this bulletin. The courses must be distributed as follows:
 (a) At least two courses on the 300 level or above.
 (b) Courses from at least two different fields.
 (c) At least six credits in a single field.

B. Mathematics: Five credit hours
The five credit hours must be of Math 119 or above.

C. Computer Science: Two credit hours
All students must take CS 105, 106, ARCH 125 or a computer science course at the 200 level or above.

D. Humanities and Social or Behavioral Sciences: 21 credit hours, subject to minimum requirements in each area as specified below:

1. Humanities: a minimum of nine credit hours. Courses that satisfy this requirement are marked with an (H) in this bulletin. The courses must be distributed as follows:
 (a) Humanities 100-level course.
 (b) At least two courses marked with an (H) at the 300 level or above. Some students may use foreign language courses at the 200 level to fulfill 300-level requirements. Students wishing to use foreign language courses must confirm their eligibility with the academic associate dean.

2. Social or Behavioral Sciences: a minimum of nine credit hours. Courses that satisfy this requirement are marked with an (S) in this bulletin. The courses must be distributed as follows:
 (a) At least two courses on the 300 level or above.
 (b) Courses from at least two different fields.
 (c) At least six credits in a single field.

E. Natural Science or Engineering: 11 credit hours
This component may be satisfied by courses in engineering biology, chemistry and physics, or by courses marked with an (N) in psychology. These courses must be distributed as follows:
 (a) Two sequential natural science or engineering courses in a single field. (CHEM 124 with MS 201 satisfies this requirement.)
 (b) At least one natural science or engineering course in a second area.

F. Interprofessional Projects (IPRO): Six credit hours
Students will participate in at least two Interprofessional Project experiences. These projects develop communication, teamwork and leadership skills, as well as an awareness of economic, marketing, ethical and social issues within the framework of a multidisciplinary team project. The project teams will be integrated across academic programs and at different levels within programs. Students who complete an ROTC minor are exempt from one of the two IPRO requirements.
Special Academic Requirements

There are special requirements that go beyond or modify the basic general education requirements.

1. Policy on Writing and Communications
 IIT recognizes the importance of critical thinking, writing and oral communication in all academic pursuits and in professional practice. IIT is therefore committed to a campus-wide program that engages students in the practice of written and oral communication in all disciplines. This program includes the following components:
 (a) Students must satisfy the Basic Writing Proficiency Requirement as listed in the general education requirements.
 (b) Students must complete a minimum of 42 credit hours of courses with a significant written and oral communication component, identified with a (C) in this bulletin, with a minimum distribution as follows:
 • 15 hours in major courses and
 • 15 hours in non-major courses.
 Full time students should enroll in two (C)-designated courses, and part-time students should enroll in one (C)-designated course each academic year.
 (c) Students must seek help from one of the IIT Writing Centers when referred by course instructors or academic advisers. The Writing Center provides support for all writing instruction within the curriculum, tutoring for students referred to the center by course instructors or advisers, and individual help on demand to students who wish to improve their writing.

2. Engineering and Computer Science Majors
 The Bachelor of Science degree programs in engineering and computer science require the following courses, which may be applied to the general education requirements:
 (a) Mathematics: MATH 151, MATH 152 and at least one course numbered 200 or above.
 (b) Physics: PHYS 123 and PHYS 221.

3. Non-Applicable Courses
 Some courses are marked as not applying to graduation. These courses do affect grade point average and academic status.

4. Introduction to the Profession: 2 credit hours
 All students must complete these seminars in their first year. (Students entering with 30 hours or more of transfer credit are excused.)
Applied Mathematics
Department Web site: www.iit.edu/~am

Applied mathematics is the mathematics that is created in response to problems in science, engineering and society. Applied mathematicians work on a wide variety of topics such as how to construct methods for multi-criteria decision making (requiring discrete mathematics and statistics), predicting how the financial markets will behave (requiring probability/statistics, analysis, optimization), and analyzing how liquid flows around solids (requiring expertise in computational methods and analysis). Students with an applied mathematics background are prepared for careers in the insurance industry electronics and computer manufacturing businesses, logistics companies, pharmaceutical firms, etc.

The foci of the B.S. program at IIT are in four area of modern applied mathematics: applied analysis, computational mathematics, discrete applied mathematics, and stochastic analysis. Because the program allows maximum flexibility, a student majoring in applied mathematics will have ample opportunity to assemble a portfolio of courses that will satisfy his/her intellectual needs and career preparation. A minor is required and consists of five related courses in an area outside of applied mathematics. With a minor in computer science or one of the engineering areas, for example, the student will be well prepared to enter the job market in business or government. Students will also be prepared to continue in mathematics in graduate school.

Faculty

Chair
F.R. McMorris
Room 208 El
Ext. 7890

Associate Chair
Edwin F. Stueben

Professors
Bernstein (jointly with Chemical Engineering), Edelstein, Frank, McMorris, Erber (jointly with Physics), Nair (jointly with Mechanical and Aerospace Engineering)

Associate Professors
Adler, Duan, Heller, Lubin, Stueben

Assistant Professor
Fasshauer, Li, McGee, Reiff

Senior Lecturers
Langdon, Maslanka, Sitton

Faculty Emeriti
Byrne, Darsow, DeCicco, Deliyannis, Pearson, Reingold, Sklar

Bachelor of Science in Applied Mathematics

Required Courses Credit Hours
Applied Mathematics Requirements 39
MATH 151, 152, 230, 251, 252, 332, 400, 402, 461, 471, 475

Applied Mathematics Electives * 18

Humanities and Social Science Requirements 21

Minor Subject Requirement 15
Five related course from departments other than Applied Mathematics

Introduction to the Profession 2

Required Courses Credit Hours
Interprofessional Projects 6
IPRO 397, 497

Computer Science Requirements 4
CS 105 and 106 or CS 200

Science Requirement 4
PHYS 123

Science Electives 9

Free Electives 10/11

Total Credit Hours 128

*Applied mathematics electives are to be chosen after consultation with an academic adviser. Student goals, interests and course availability should be determining factors in this selection process.

It is worth noting that the set of electives MATH 405, 430, 453, 454, 486 and 487 are fundamental to the study of discrete methods. The courses MATH 472, 473, 486, 487, 488 and 489 focus on elementary topics in the field of computational mathematics. Issues in stochastic analysis are studied in MATH 453, 473, 476, 482, 483 and 486, and topics essential in areas of applied analysis are examined in MATH 405, 472, 486, 487, 488 and 489.
Applied Mathematics Curriculum

Semester 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to the Profession</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151 or 161 Calculus I</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CS 105 Introduction to Computer</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Humanities Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>16</td>
<td>4</td>
<td>18</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 152 or 162 Calculus II</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>MATH 230 Introduction to Discrete Mathematics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CS 106 Introduction to Computer</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Humanities or Social Science Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>15</td>
<td>5</td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 251 Multivariate and Vector Calculus</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MATH 332 Matrices</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Minor Subject</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>16</td>
<td>3</td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 252 Introduction to Differential Equations</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MATH 471 Numerical Methods I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Minor Subject</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Science Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>16</td>
<td>0</td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 5

<table>
<thead>
<tr>
<th>Course</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 402 Complex Analysis</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH 475 Probability</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Applied Mathematics Elective A</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Minor Subject</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Science Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>15</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 6

<table>
<thead>
<tr>
<th>Course</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 400 Analysis I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH 461 Fourier Series and Boundary-Value Problems</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Applied Mathematics Elective B</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Minor Subject</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Humanities and Social Science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 397</td>
<td></td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>IPRO 497</td>
<td></td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Totals</td>
<td>13</td>
<td>6</td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 7

<table>
<thead>
<tr>
<th>Course</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Mathematics Elective C</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Applied Mathematics Elective D</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Science Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Minor Subject</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>15</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 8

<table>
<thead>
<tr>
<th>Course</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Mathematics Elective E</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Applied Mathematics Elective F</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 497</td>
<td></td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Humanities and Social Science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>13</td>
<td>6</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours 128
College of Architecture
Department Web site: www.arch.iit.edu

Now, in the new century, architecture must fill an ever more demanding role in asserting human values in a rapidly changing, technology-driven and increasingly complex global society. The integration of new construction, along with the conservation of the old, brings together current issues of urban housing, commercial development, infrastructure and transportation, along with critical concerns for energy and a sustainable environment. The resulting cultural values of community development must be adaptable to both domestic and international contexts, and thoughtful to the consequences of what we build.

The College of Architecture at IIT is uniquely positioned to provide the academic challenge of preparing students for this professional responsibility.

The college’s roots are firmly embedded in Chicago’s architectural history. Creative pioneers like Sullivan, Jenney, Root, Burnham and Wright produced a body of work that established the principles of modern architecture. These architects were energized by exciting new engineering possibilities, yet they never wavered from the unifying belief in a rich cultural expression of architecture for their time. They also believed in education and, in 1895, combined a course of study in drawing and construction at the Art Institute of Chicago, with the support courses of history, mathematics and engineering from the then Armour Institute of Technology. The catalog for this new program was called the Chicago School of Architecture.

Out of these beginnings, the College of Architecture continues this tradition of responding to the leading issues of architectural education and practice. Located in one of the world’s greatest cities for the study of architecture, the most outstanding architectural and engineering resources of Chicago provide both faculty and reinforcement of the educational mission. Moreover, S.R. Crown Hall, designed by Mies van der Rohe, is the ultimate space to study architecture. Set within the Mies-designed campus, it has become recognized as one of the most significant buildings of the 20th century.

Faculty

Dean
Donna V. Robertson
S. R. Crown Hall
Ext. 73230

Assistant Dean for Academic Affairs
Lee W. Waldrep
S. R. Crown Hall
Ext. 78335

Professors
Elneimeiri, Land

Associate Professors
Beltemacchi, Hovey, Robertson, Schipporeit, Sharpe, Takeuchi, Thomas

Assistant Professors
Charles, Flury, Lum, Pedret

Studio Professors
Brown, Conger-Austin, Denison, Horn, Karidis, Krueck, Nicholson, Roesch, Wetzel

Senior Lecturer
Krawczyk

Instructors
Felsen, Grimes

Adjunct Professors
Abdelrazaq, Baker, Bihler, Bowman, Clark, Fujikawa, J. Hartray, Hilary, Moreno, Shaver, Sobel

Adjunct Associate Professors
Dolan, Hamill, Kriegshauzer, Miller, Sennott

Adjunct Assistant Professors
Abdelmawla, Brock, Braucher, Garg, Gentry, Goldsmith, A. Hartray, Klaeschem, McKelvey, Nagle, Pettigrew, Powell, Riley, Ronan, Rubio, Waldrep

Visiting Assistant Professor
Schendel

Faculty Emeriti
Danforth, Hannaford, Utsunomiya

Visiting Critic
Battle
Professional Degrees

The undergraduate professional degree program at IIT has always been a comprehensive five-year fully accredited Bachelor of Architecture degree. The educational format is based on providing the fundamental body of knowledge required by the profession within a fully coordinated three-year core studio sequence. Each of the three years is team taught to horizontally integrate all courses within each year and vertically sequence learning experiences from year to year. This professional background within the three-year core becomes the preparation for the last two years of electives in design studios focused on topic areas such as spatial awareness, comprehensive building design, and the design of large building complexes.

IIT has also taken a leadership role in addressing the responsibilities of professional education for the next century's global workplace. While technical proficiency will always be necessary, IIT recognizes that colleges must also educate students to work as part of teams, to communicate well, and to understand the economic, social, environmental and international context of their profession. Faculty are encouraged to broaden the upper-level studios to become real-world interdisciplinary projects. This new emphasis on holistic learning, when combined with a new global vision and advanced computer and communication technology, positions IIT and the College of Architecture on the leading edge of higher education.

To clarify the difference in architectural degree programs, it should be noted that most states require an individual intending to become an architect to hold an accredited degree. Two types of degrees are accredited by the National Architectural Accrediting Board: (1) The Bachelor of Architecture, which requires a minimum of five years of study, and (2) The Master of Architecture, which requires a minimum of three years of study following an unrelated bachelor’s degree or two years following a related pre-professional bachelor’s degree. These professional degrees are structured to educate those students who aspire to registration and license to practice as architects. The college offers both of these degrees.

The four-year pre-professional degree, where offered, is not accredited by NAAB. The pre-professional degree is useful to those wishing a foundation in the field of architecture as preparation for either continued education in a professional degree program or for employment options in fields related to architecture. (The college does not offer this degree.)

Bachelor of Architecture

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture Requirements</td>
<td>83</td>
</tr>
<tr>
<td>ARCH 100, 109, 110, 113, 114, 125, 200, 201, 202, 225, 305, 306, 403, 404, 413, 417, 418, 419, 420, 423</td>
<td></td>
</tr>
<tr>
<td>City and Regional Planning Requirements</td>
<td>6</td>
</tr>
<tr>
<td>CRP 201, 465</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>6</td>
</tr>
<tr>
<td>MATH 119, 122</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>6</td>
</tr>
<tr>
<td>PHYS 211, 212</td>
<td></td>
</tr>
<tr>
<td>Civil and Architectural Engineering Requirements</td>
<td>16</td>
</tr>
<tr>
<td>CAE 286, 287, 351, 352, 425</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art and Architectural History Requirements</td>
<td>6</td>
</tr>
<tr>
<td>AAH 119, 120</td>
<td></td>
</tr>
<tr>
<td>Architecture History Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities and Social Science Requirements</td>
<td>21</td>
</tr>
<tr>
<td>See general education requirements on page 30.</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Architecture Electives or Specialized Minor</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours 168
Architecture Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Lab. Cr.</th>
<th>Lect.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 100 Introduction to Architecture</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ARCH 113 Architecture Studio I</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 109 Freehand Drawing I</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>MATH 119 Geometry for Architects</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Humanities</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>7</td>
<td>16</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
<th>Lab. Cr.</th>
<th>Lect.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 200 Introduction to Architecture</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>ARCH 114 Architecture Studio II</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 110 Freehand Drawing II</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>MATH 122 Introduction to Mathematics II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 211 Basic Physics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 125 Introduction to Architectural Computing</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>8</td>
<td>20</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Lab. Cr.</th>
<th>Lect.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 201 Architecture III: Structures, Building Systems and Assembly</td>
<td>0</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>AAH 119 History of World Architecture I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CAE 286 Theory and Concept of Structural Mechanics</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 212 Basic Physics II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 225 Computer-Aided Design in Practice</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>11</td>
<td>12</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 4</th>
<th>Lab. Cr.</th>
<th>Lect.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 202 Architecture IV: Structures, Building Systems and Assembly</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>AAH 120 History of World Architecture II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CAE 287 Structures I, Analysis and Behavior</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CRP 201 The Dwelling</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Social science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>12</td>
<td>12</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Lab. Cr.</th>
<th>Lect.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 305 Architecture V</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 403 Mechanical and Electrical Building Systems for Architects I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 423 Architectural Programming</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CAE 351 Structures II: Steel and Timber Design</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Architecture elective/minor</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>12</td>
<td>12</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6</th>
<th>Lab. Cr.</th>
<th>Lect.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 306 Architecture VI</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 404 Mechanical and Electrical Building Systems for Architects II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CAE 352 Structures III: Reinforced Concrete and Masonry Design</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CRP 465 The Ecological Basis of Planning</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Architecture elective/minor</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>12</td>
<td>12</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Lab. Cr.</th>
<th>Lect.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 417 Architecture VII</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Architectural history elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Architecture elective/minor</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Social science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Humanities/social science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>12</td>
<td>12</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8</th>
<th>Lab. Cr.</th>
<th>Lect.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 418 Architecture VIII</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>CAE 425 Fire Protection and Life Safety in Building Design</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IPRO elective</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>7</td>
<td>18</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 9</th>
<th>Lab. Cr.</th>
<th>Lect.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 419 Architecture IX</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Architecture elective/minor</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IPRO elective</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Social science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>7</td>
<td>18</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 10</th>
<th>Lab. Cr.</th>
<th>Lect.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 413 Architectural Practice</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 420 Architecture X</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Architecture elective/minor</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>9</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours: 168
Optional Programs

Architecture students are encouraged to select electives that provide a sequence of 15 credit hours of learning experiences related to a specific interest that will reinforce the curriculum. Such topical fields of study should be chosen early in the student's program in consultation with an academic adviser.

Bachelor of Architecture/Master of Business Administration Double-Degree Option

Qualified students may earn both the Bachelor of Architecture and Master of Business Administration (M.B.A.) degrees in six, rather than the normal seven, years. Students who are completing their eighth semester, or an equivalent of 124 credit hours, in architecture at IIT may apply for entry into the joint program. They should take preparatory courses for the M.B.A. prior to entry and the Graduate Management Admission Test (GMAT) during the eighth semester. Students who anticipate entering into the program should seek advising in the Stuart Graduate School of Business and the College of Architecture early in their studies at IIT.

Bachelor of Architecture/Master of Civil Engineering Double-Degree Option

Qualified students regularly enrolled at IIT may earn both the Bachelor of Architecture and the Master of Civil Engineering (M.C.E.) degrees. They must complete preparatory courses for the M.C.E. prior to entry into the combined program. Students who anticipate entry into the combined program and who intend to specialize in structural engineering must successfully complete the following courses as part of their undergraduate program in architecture: MATH 151, MATH 152, MATH 251, CAE 303, CAB 304, CAE 307, CAE 310, CAE 431, and CAE 432 in place of MATH 119, MATH 122, CAE 287, CAE 351, CAE 352 and as technical electives. Students who anticipate entering into the program and who intend to specialize in construction engineering and management must successfully complete the following courses as part of the technical electives in their undergraduate program in architecture: CAB 323, CAB 431, CAE 432 and CAE 457.

Students who anticipate entering into the program should seek advising in the Department of Civil and Architectural Engineering and the College of Architecture early in their studies at IIT.
Biological, Chemical and Physical Sciences
Department Web site: www.iit.edu/~bps

In an ever more technological world, a substantive understanding of the sciences is a requirement for many professions, including careers in science, education, health professions and, increasingly, areas such as law and business. In the latter cases, a technical background can serve as a unique and sought after qualification.

The Department of Biological, Chemical and Physical Sciences offers traditional Bachelor of Science (B.S.) degrees in each area of biology, chemistry and physics, as well as an interdisciplinary Bachelor of Science in Molecular Biochemistry and Biophysics (M.B.B.), which combines elements of all three disciplines. Traditional programs serve as a solid foundation for entry into graduate and medical schools and for jobs in both the government and the private sector. This is also true of the M.B.B. major, which is part of the honors medical programs with Rush University and the Chicago Medical School.

The department also provides specialized bachelor’s degree programs that integrate the sciences with law and business; these include honors programs, similar to the M.B.B. honors medical program, which guarantee admission into IIT’s Chicago-Kent College of Law or Stuart Graduate School of Business. Finally, research honors programs are offered in biology, chemistry and physics.

Details of the four traditional programs, as well as of the specialized degree programs, can be found on the following pages.

Faculty

Chair
H. Larry Scott
182 Life Science
Ext. 73480

Biology Faculty

Professors
D. Cork, Roth, B. Stark

Adjunct Professors
Gendel, Kilbane, McCormick, Rubenstein

Associate Professors
Howard

Assistant Professors
T.C. Irving, Menhart

Faculty Emeriti
Bretz, Erwin, Hayashi, Hoskin, Jasper, Koblick, Roush, Webster

Chemistry Faculty

Professors
Eisenberg, P.Y. Johnson, Lykos, Schug

Associate Professors
Khan, Mandal, Stagliano, Stetter

Assistant Professors
Wang

Adjunct Associate Professor
Smotkin

Physics Faculty

Pritzker Professor of Science
Lederman

Professors
Erber*, P.W. Johnson, Kallend**, Morrison, Rubin, Scott, Zasadzinski

Associate Professors
Bunker, Chapman, Coffey, Kaplan, Longworth, Segre

Assistant Professor
White

Research Associate Professors
Ivanov, Port, Solomey, Stepanov, Zhang

Adjunct Associate Professor
Gluskin

Research Assistant Professor
Dimakis

Visiting Assistant Professor
Karagiannes

Faculty Emeriti
R. Burnstein, Colvert, Grossweiner, Hauser, Mahliot, Markham, Spector, Zwicker

* Jointly with Department of Applied Mathematics
** Jointly with Department of Mechanical, Materials and Aerospace Engineering
Biology

The undergraduate biology degree at IIT provides excellent preparation for the health professions, including medicine, osteopathic medicine and dentistry. In addition, the rigorous program prepares graduates for careers in biotechnology, biochemistry, patent law, and environmental and biochemical engineering. Graduates are also prepared for immediate entry into positions in industrial, medical and other research laboratories and for graduate programs in biotechnology, cell biology, biochemistry, genetics and molecular biology.

A semester-by-semester outline (including credit hours) is presented below. Complete course descriptions can be found on pages 124-25.

Bachelor of Science in Biology

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology Requirements</td>
<td>40</td>
</tr>
<tr>
<td>BIOL 100, 107, 109, 115, 117,</td>
<td></td>
</tr>
<tr>
<td>210, 214, 225, 320, 403, 404,</td>
<td></td>
</tr>
<tr>
<td>430, 445, 446, 495</td>
<td></td>
</tr>
<tr>
<td>Biology Electives</td>
<td>12</td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Any two of the following:</td>
<td></td>
</tr>
<tr>
<td>IPRO 297, 397, 497</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>10</td>
</tr>
<tr>
<td>MATH 151,152</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirements</td>
<td>18</td>
</tr>
<tr>
<td>CHEM 124, 125, 237, 239, 247</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics Requirements</td>
<td>12</td>
</tr>
<tr>
<td>PHYS 123, 221, 223</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
</tr>
<tr>
<td>Humanities/Social Science Electives</td>
<td>21</td>
</tr>
<tr>
<td>Free Electives</td>
<td>6</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>127</td>
</tr>
</tbody>
</table>
Biology Curriculum

Semester 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 107 General Biology Lectures</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 109 General Biology Laboratory</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 124 Principles of Chemistry I</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 100 Introduction to the Profession</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 115 Human Biology Lectures</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 117 Experimental Biology Laboratory</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 125 Principles of Chemistry II</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Humanities 100-level course*</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MATH 152 Calculus II</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 214 Genetics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 237 Organic Chemistry I</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 123 General Physics I</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Humanities/social science elective*</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Humanities/social science elective*</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 210 Microbiology Lectures</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 239 Organic Chemistry II</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 221 General Physics II</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 225 Microbiology Laboratory</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Humanities/social science elective*</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 5

<table>
<thead>
<tr>
<th>Course</th>
<th>Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 430 Animal Physiology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 247 Analytical Chemistry</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 223 General Physics III</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CS 105 Computer Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Humanities/social science elective*</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 6

<table>
<thead>
<tr>
<th>Course</th>
<th>Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 403 Biochemistry Lectures</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 404 Biochemistry Laboratory</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 397 Interprofessional Project I</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Humanities/social science elective*</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 7

<table>
<thead>
<tr>
<th>Course</th>
<th>Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 445 Cell Biology Lectures</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 446 Cell Biology Laboratory</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Biology elective</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 485 Biology Colloquium</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 320 Literature in Biology</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Biology elective</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 8

<table>
<thead>
<tr>
<th>Course</th>
<th>Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology elective</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Biology elective</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 485 Biology Colloquium</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project II</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Humanities/social science elective*</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Total Credit Hours 127

* Humanities and social sciences components of the general education requirement.
Chemistry

The undergraduate chemistry program at IIT provides excellent preparation for a number of professions, including chemical research, law (patent, forensic and intellectual property), medicine, business and environment. The rigorous interdisciplinary nature of the program prepares students with a greater breadth of understanding of how chemistry interrelates with other sciences and with the professions mentioned above. Graduates are also prepared for immediate entry into positions in industrial, medical or other research laboratories and for graduate studies in analytical, inorganic, organic or physical chemistry.

A semester-by-semester outline is presented below. Complete course descriptions are available on pages 133-35.

Bachelor of Science in Chemistry

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Requirements</td>
<td>47</td>
<td>Physics Requirements</td>
<td>12</td>
</tr>
<tr>
<td>CHEM 100, 124, 125, 237, 239,</td>
<td></td>
<td>PHYS 123, 221, 223</td>
<td></td>
</tr>
<tr>
<td>240, 247, 321, 334, 335, 343, 344,</td>
<td></td>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>415, 416, 451, 485</td>
<td></td>
<td>CS 105</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
<td>Humanities/Social Science Electives</td>
<td>21</td>
</tr>
<tr>
<td>IPRO 297 and 497 or 397 and 497</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry Electives</td>
<td>9</td>
<td>Free Electives</td>
<td>12</td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>18</td>
<td>Total Credit Hours</td>
<td>127</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete course descriptions are available on pages 133-35.
Chemistry Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 124 Principles of Chemistry I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CHEM 100 Introduction to the Profession</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CS 105 Computer Science</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Humanities 100-level course*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
<th>Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 125 Principles of Chemistry II</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PHYS 123 General Physics I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 152 Calculus II</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Humanities/social science elective*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 237 Organic Chemistry I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CHEM 247 Analytical Chemistry</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PHYS 221 General Physics II</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 251 Calculus III</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 4</th>
<th>Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 239 Organic Chemistry II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHEM 240 Organic Chemistry Laboratory</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PHYS 223 General Physics III</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 252 Differential Equations</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Humanities/social science elective*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 343 Physical Chemistry I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHEM 321 Instrumental Analysis</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>IPRO 397 Interprofessional Project I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Humanities/social science elective*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6</th>
<th>Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 344 Physical Chemistry II</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CHEM 334 Spectroscopic Methods</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CHEM 335 Spectroscopic and Separation Techniques</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CHEM 415 Inorganic Chemistry</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Humanities/social science elective*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 416 Advanced Chemistry Laboratory</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHEM 451 Techniques in Chemical Literature</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CHEM 485 Chemistry Colloquium</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chemistry elective†</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Humanities/social science elective*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8</th>
<th>Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry elective†</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Chemistry elective†</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHEM 485 Chemistry Colloquium</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Humanities/social science elective*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 127

* Humanities and social sciences components of general education requirement.
†† Any 400- or 500-level chemistry course or interdisciplinary courses with departmental consent.
Molecular Biochemistry and Biophysics

Why should a biologist know about physics and chemistry? Or physicists and chemists about biology? Just ask some of IIT's faculty who are using x-ray synchrotron radiation science to study proteins, their molecular structures, and the drugs that interact with them. This research may lead to the development of more successful, potent drugs.

Molecular Biochemistry and Biophysics (M.B.B.) is an interdisciplinary major, combining biology, chemistry and physics with innovative experimental techniques. Through this study, students will discover the essential building blocks of life, how they fit together, how they work, and the physical methods for exploring these building blocks. With its quantitative emphasis and research focus, this program is a great way to prepare for careers in medicine or medical research. It is also one of the majors that is part of the honors medical programs with Rush University and the Chicago Medical School. In addition, M.B.B. majors may be eligible to apply for the Applied Sciences Scholarship (ranging from half to full tuition) and the Research Honors Program.

A semester-by-semester outline of the Molecular Biochemistry and Biophysics Program is presented below.

Bachelor of Science in Molecular Biochemistry and Biophysics

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology Requirements</td>
<td>40</td>
</tr>
<tr>
<td>BIOL 100, 107, 109, 115, 117, 210, 214, 225, 320, 403, 404, 430, 445, 446, 495</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirements</td>
<td>25</td>
</tr>
<tr>
<td>CHEM 124, 125, 237, 239, 247 (or PHYS 300)</td>
<td></td>
</tr>
<tr>
<td>343, 344 (or PHYS 348 with approval)</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>15</td>
</tr>
<tr>
<td>PHYS 123, 221, 223, 410</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>IPRO 297, 497</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics Requirements</td>
<td>20/21</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252 (or PHYS 240), 476</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities/Social Science Electives</td>
<td>21</td>
</tr>
</tbody>
</table>

Total Credit Hours 129/130
Molecular Biochemistry and Biophysics Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Cr.</th>
<th>Hrs.</th>
<th>Semester 2</th>
<th>Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 124</td>
<td>4</td>
<td>Principles of Chemistry I</td>
<td>CHEM 125</td>
<td>4</td>
<td>Principles of Chemistry II</td>
</tr>
<tr>
<td>BIOL 107</td>
<td>3</td>
<td>General Biology Lectures</td>
<td>BIOL 115</td>
<td>3</td>
<td>Human Biology Lectures</td>
</tr>
<tr>
<td>BIOL 109</td>
<td>2</td>
<td>General Biology Laboratory</td>
<td>BIOL 117</td>
<td>2</td>
<td>Experimental Biology Laboratory</td>
</tr>
<tr>
<td>BIOL 100</td>
<td>2</td>
<td>Introduction to the Profession</td>
<td></td>
<td>3</td>
<td>Humanities 100-level course*</td>
</tr>
<tr>
<td>MATH 151</td>
<td>5</td>
<td>Calculus I</td>
<td>MATH 152</td>
<td>5</td>
<td>Calculus II</td>
</tr>
<tr>
<td>Totals</td>
<td>16</td>
<td></td>
<td>Totals</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Cr.</th>
<th>Hrs.</th>
<th>Semester 4</th>
<th>Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 123</td>
<td>4</td>
<td>General Physics I</td>
<td>PHYS 221</td>
<td>4</td>
<td>General Physics II</td>
</tr>
<tr>
<td>CHEM 237</td>
<td>4</td>
<td>Organic Chemistry I</td>
<td>CHEM 239</td>
<td>3</td>
<td>Organic Chemistry II</td>
</tr>
<tr>
<td>BIOI 214</td>
<td>3</td>
<td>Genetics</td>
<td>BIOL 210</td>
<td>3</td>
<td>Microbiology Lectures</td>
</tr>
<tr>
<td>MATH 251</td>
<td>4</td>
<td>Calculus III</td>
<td>BIOL 225</td>
<td>2</td>
<td>Microbiology Laboratory</td>
</tr>
<tr>
<td>CS 105</td>
<td>2</td>
<td>Computer Science</td>
<td>IPRO 297</td>
<td>3</td>
<td>Interprofessional Project I</td>
</tr>
<tr>
<td>Totals</td>
<td>17</td>
<td></td>
<td>Totals</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Cr.</th>
<th>Hrs.</th>
<th>Semester 6</th>
<th>Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 223</td>
<td>4</td>
<td>General Physics III</td>
<td>BIOL 403</td>
<td>4</td>
<td>Biochemistry Lectures</td>
</tr>
<tr>
<td>BIOL 430</td>
<td>3</td>
<td>Animal Physiology</td>
<td>BIOL 404</td>
<td>3</td>
<td>Biochemistry Laboratory</td>
</tr>
<tr>
<td>CHEM 247</td>
<td>3</td>
<td>Analytical Chemistry OR</td>
<td>PHYS 240</td>
<td>4</td>
<td>Computational Science OR</td>
</tr>
<tr>
<td>PHYS 300</td>
<td>3</td>
<td>Instrumentation Lab</td>
<td>MATH 252</td>
<td>3/4</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>CHEM 343</td>
<td>3</td>
<td>Physical Chemistry I</td>
<td>CHEM 344</td>
<td>4</td>
<td>Physical Chemistry II</td>
</tr>
<tr>
<td>Humanities/social science elective*</td>
<td>3</td>
<td></td>
<td>Humanities/social science elective*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>16</td>
<td></td>
<td>Totals</td>
<td>17/18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Cr.</th>
<th>Hrs.</th>
<th>Semester 8</th>
<th>Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 445</td>
<td>3</td>
<td>Cell Biology Lectures</td>
<td>PHYS 410</td>
<td>3</td>
<td>Molecular Biophysics</td>
</tr>
<tr>
<td>BIOL 446</td>
<td>3</td>
<td>Cell Biology Laboratory</td>
<td>BIOL 320</td>
<td>2</td>
<td>Literature in Biology</td>
</tr>
<tr>
<td>BIOL 495</td>
<td>1</td>
<td>Biology Colloquium</td>
<td>MATH 476</td>
<td>3</td>
<td>Statistics</td>
</tr>
<tr>
<td>IPRO 497</td>
<td>3</td>
<td>Interprofessional Project II</td>
<td>BIOL 495</td>
<td>1</td>
<td>Biology Colloquium</td>
</tr>
<tr>
<td>Humanities/social science elective*</td>
<td>3</td>
<td></td>
<td>Humanities/social science elective*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Humanities/social science elective*</td>
<td>3</td>
<td></td>
<td>Humanities/social science elective*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>16</td>
<td></td>
<td>Totals</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 129/130

* Humanities and social sciences components of general education requirements.
Physics

The undergraduate physics program at IIT provides an excellent preparation for a number of professions including law (patent and intellectual property), health physics, business and research. Graduates are prepared for immediate entry into positions in industrial and other research laboratories and for graduate study in biophysics, solid-state physics or high energy physics.

A semester-by-semester outline (including credit hours) is presented below. Complete course descriptions are also available on pages 165-67.

Bachelor of Science in Physics

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics Requirements</td>
<td>55</td>
</tr>
<tr>
<td>PHYS 100, 123, 221, 223, 240, 300, 304, 308, 309, 348, 405, 406, 413, 414, 427, 428, 440, 485</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>IPRO 397, 497</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>18</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252</td>
<td></td>
</tr>
<tr>
<td>Mathematics Electives</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Requirements</td>
<td>8</td>
</tr>
<tr>
<td>CHEM 124, 125</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
</tr>
<tr>
<td>Humanities/Social Science Electives</td>
<td>21</td>
</tr>
<tr>
<td>Free Electives</td>
<td>12</td>
</tr>
</tbody>
</table>

Total Credit Hours 128
Physics Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Cr.</th>
<th>Semester 2</th>
<th>Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys 123 General Physics I</td>
<td>4</td>
<td>Phys 221 General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>Chem 124 Principles of Chemistry I</td>
<td>4</td>
<td>Chem 125 Principles of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>Phys 100 Introduction to the Profession</td>
<td>2</td>
<td>Math 152 Calculus II</td>
<td>5</td>
</tr>
<tr>
<td>Math 151 Calculus I</td>
<td>5</td>
<td>Humanities/social science elective*</td>
<td>3</td>
</tr>
<tr>
<td>Humanities 100-level course</td>
<td>3</td>
<td>Totals</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Cr.</th>
<th>Semester 4</th>
<th>Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys 223 General Physics III</td>
<td>4</td>
<td>Phys 348 Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>Cs 105 Computer Science</td>
<td>2</td>
<td>Phys 240 Computational Science</td>
<td>3</td>
</tr>
<tr>
<td>Math 251 Calculus III</td>
<td>4</td>
<td>Math 252 Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>Humanities/social science elective*</td>
<td>3</td>
<td>Humanities/social science elective*</td>
<td>3</td>
</tr>
<tr>
<td>Humanities/social science elective*</td>
<td>3</td>
<td>Totals</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Cr.</th>
<th>Semester 6</th>
<th>Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys 308 Classical Mechanics I</td>
<td>3</td>
<td>Phys 309 Classical Mechanics II</td>
<td>3</td>
</tr>
<tr>
<td>Phys 300 Instrumentation Laboratory</td>
<td>3</td>
<td>Phys 304 Kinetic Theory and Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>Ipro 307 Interprofessional Project I</td>
<td>3</td>
<td>Phys 427 Advanced Physics Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics elective</td>
<td>3</td>
<td>Free elective†</td>
<td>3</td>
</tr>
<tr>
<td>Humanities/social science elective*</td>
<td>3</td>
<td>Totals</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Cr.</th>
<th>Semester 8</th>
<th>Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys 405 Quantum Theory I</td>
<td>3</td>
<td>Phys 406 Quantum Theory II</td>
<td>3</td>
</tr>
<tr>
<td>Phys 428 Advanced Physics Laboratory II</td>
<td>3</td>
<td>Phys 440 Computational Physics</td>
<td>3</td>
</tr>
<tr>
<td>Phys 413 Electricity and Magnetism I</td>
<td>3</td>
<td>Phys 414 Electricity and Magnetism II</td>
<td>3</td>
</tr>
<tr>
<td>Phys 485 Physics Colloquium</td>
<td>1</td>
<td>Phys 485 Physics Colloquium</td>
<td>1</td>
</tr>
<tr>
<td>Ipio 497 Interprofessional Project II</td>
<td>3</td>
<td>Mathematics elective</td>
<td>3</td>
</tr>
<tr>
<td>Free elective†</td>
<td>3</td>
<td>Free elective†</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>16</td>
<td>Totals</td>
<td>16</td>
</tr>
</tbody>
</table>

Total Credit Hours: 128

* Humanities and social science components of general education requirements. † Any advanced undergraduate or graduate physics course selected in consultation with the academic adviser.
Other Bachelor’s Degree Programs in Biological, Chemical and Physical Sciences

Beyond the traditional degree programs, the department offers several specialized programs designed for students who are interested in studying science and who wish to pursue a postgraduate education. Detailed programs of study for each of the programs listed below are available from the department.

Research Honors Program

This program is specifically designed for students who plan to pursue an advanced research degree. The program of study is based on the traditional degrees but is accelerated to include a full year of research experience in a faculty research lab, culminating in a senior thesis. In addition, students selected for this program may have guaranteed summer stipends for the summers after their sophomore and junior years in addition to any other scholarships that have been awarded.

Combined B.S./MD. Programs

Students enrolled in the M.B.B. degree program are eligible for one of these programs. For detailed information, see page 110.

Honors Law Programs

Students in any of the BCPS programs are eligible for this program (see page 109). For students in biology, chemistry and physics, this is a seven-year program, which can be accelerated under special conditions approved by the student’s advisor.

Five-Year Financial Markets and Trading Program

This program combines an undergraduate science degree with the Master of Science in Financial Markets and Trading. The five-year combined B.S./M.S. program guarantees admission to the master’s program, provided the student maintains an undergraduate GPA of 3.0 and performs satisfactorily on the GMAT. Students enrolled in any of the BCPS programs are eligible for this program.
Stuart Graduate School of Business
Department Web site: www.stuart.iit.edu

The Stuart Graduate School of Business offers graduate degrees and teaches undergraduate courses. Because employment in many professions often leads to management responsibility, undergraduate students should consider taking a minor in management to help develop their competence as managers. A minor in management would also help those students who seek an M.B.A. after the conclusion of their undergraduate program.

Faculty

Dean
M. Zia Hassan
430C Downtown Campus
Ext. 66515

Adviser, Undergraduate Programs
John R. Twombly
446 Downtown Campus
Ext. 66538

Professors
Bilson, Geisler, Goldhar, Hassan, Knowles, Thomopoulos

Associate Professors
Bariff (Coleman-Fannie Mae Candies Foundation Associate Professor), Hall, Kraft, Prabhaker, Tourk

Clinical Associate Professors
Hamilton, Twombly

Assistant Professor
Barlow

Lecturers
Jabbari, Rausch
Chemical and Environmental Engineering
Department Web site: www.chee.iit.edu

The Department of Chemical and Environmental Engineering offers leading edge research and education programs that prepare engineers for the technological challenges of the 21st century. The department, capitalizing on its unique interdisciplinary focus, provides students with a knowledge of chemical and environmental engineering fundamentals; the capability to design processes that incorporate principles of pollution prevention; and an understanding of economic, environmental and societal issues that influence intelligent technology choices.

B.S., M.S., Professional Master’s and Ph.D. degree programs are offered in both chemical and environmental engineering. M.S. and Professional Master’s degree programs are also offered in food process engineering and a combination chemical engineering/computer science degree. Among the innovative programs available are a 4.5-year double B.S. in Chemical and Environmental Engineering and a five-year B.S. in Chemical Engineering/Master of Environmental Engineering combination. The department also offers B.S.M.D. programs in engineering and medicine (see page 115) and a combined undergraduate/graduate law program (see page 114).

Faculty

Chair
Hamid Arastoopour
Room 127 Perlstein Hall
Ext. 73040

Professors
Arastoopour (Max McGraw Professor), B. Bernstein, Cinar (Associate Vice President for Research and Dean of the Graduate College), Cooper (Vice President and Chief Academic Officer of the Main Campus), Gidaspow, Moschandreas, Myerson (Dean of Armour College), Noll, Parulekar (Associate Chair of Graduate Affairs), Selman (Director of Center for Electrochemical Science and Engineering), Wasan (Vice President for International Affairs)

Associate Professors
Abbasian (Gas Technology Institute Associate Professor), Anderson (Director, Rice Campus Programs), Schieber, Smotkin, Teymour (S.C. Johnson Polymer Associate Professor and Associate Chair of Undergraduate Affairs), Prakash, Venerus (Director of Center of Excellence in Polymer Science and Engineering)

Assistant Professors
Chmielewski, Khalili (Director of Environmental Management Program), Pagilla, Perez-Luna

Adjunct Professors
Balasubramaniam (Director of Food Processing and Food Safety and Technology programs), Caracotsios, Fields, Knowlton, Lindahl, Lyczkowski, Sizer, Wang

Senior Lecturer
Aderangi

Research Professors
Al-Hallaj, Beissinger, Linden (Max McGraw Professor and Director of Energy+Power Center), Nikolov

Part-Time Faculty
Abrevaya, Atkins, Basila, Berry, Butler, Franek, Hutten, Jacobson, Kelley, Myers, Negiz, Nykiel, Oskouie, Vamos

Faculty Emeritus
Byrne, Swanson

Special Program Note for the Chemical and Environmental Engineering Programs

The Interprofessional Project Experience

Students in the chemical and environmental engineering programs must be enrolled in six credits of Interprofessional Projects according to the following format:
IPRO 296 Introduction to IPROs (1 credit)
IPRO 397 Interprofessional Project (3 credits)
IPRO 496 Design IPRO (2 credits)

IPRO 397 provides the opportunity to enroll in an IPRO offered by any academic unit. IPRO 296 and 496 create a package to accomplish interdisciplinary teamwork for process design. All project groups will have students from the chemical and environmental engineering programs. IPRO 496 students attend one lecture weekly on process design and a two-hour meeting with the expanded IPRO group and their project adviser. The expanded IPRO group consists of the IPRO 496 students, IPRO 296 students and students from other academic units who have registered for the relevant IPRO 297/397/497 sections (3 credit hours). IPRO 296 students provide support to the specific design activity through literature survey, data generation and use of design software as appropriate. IPRO 496 students are responsible for developing and designing the process. IPRO 297/397/497 students enrich the project by extending the work into their areas of specialization.
Chemical Engineering

Chemical engineering is concerned with the design, development and management of facilities that convert raw materials into useful products. The engineer must assume responsibility for the economical use of the raw materials, preservation of the environment, and profitability of the operation. The chemical engineering program has been designed to provide both the engineering competence and the professional skills necessary to succeed in this endeavor. In order to achieve this objective, the curriculum incorporates coursework in both of these areas throughout the four-year duration of the program.

Coursework

The chemical engineering curriculum emphasizes basic knowledge and applications of transport processes, thermodynamics and kinetics of processes, automatic control, and design, as well as fundamental sciences, mathematics and engineering sciences. Design experience is spread across the curriculum, beginning with the Introduction to the Profession courses. Equipment design is emphasized in courses such as Fluid Mechanics and Heat-Transfer Operations, Mass-Transfer Operations, and Chemical Reaction Engineering. Control-system design is practiced in the Process Control course. Process modeling, simulations and optimization are discussed and practiced in Transport Phenomena, Process Modeling and System Theory, Numerical and Data Analysis, Statistical Tools for Engineering, and Process Control courses. The capstone design courses (Chemical Process Design and Process Design IPRO) integrate these design concepts and practice process design and optimization. In addition to engineering competence, the program also examines the economic, environmental and societal implications of chemical engineering.

Professional Training

Professional training is stressed equally in the design of the chemical engineering curriculum. Because engineering is largely a team effort, the department develops the individual’s ability to work effectively as a team member. Group projects are assigned starting with the Introduction to the Profession course. Laboratory course and capstone design course projects are conducted by teams of students. The laboratory work is designed to reinforce the concepts developed in the lectures and to show the application of chemical engineering principles to the solution of real-world problems. Because individual attention is so important to the student’s growth, laboratory sections are small and a high level of personal contact between student and instructor is maintained. Students are encouraged to become involved with state-of-the-art research projects at the undergraduate level. The industry/university co-op program is available to students who would like to use one or more extra semesters any time after their sophomore year to work on an internship in industry.

Specialized Programs

In addition to the core curriculum, special programs exist to accommodate the student who wants to develop more extensive background in related areas. With their exposure to a wide range of industrial applications and problems, students are better equipped to make a decision to explore an area of interest in depth. Professional specializations are available in:

- Energy/Environment/Economics (E3);
- Environmental Engineering;
- Polymer Science and Engineering;
- Bioengineering; and
- Process Design and Operation.

Students may also choose a minor program from the list on pages 109-11.

All students must include in their minor program, or as a technical elective, CHE 426 (Statistical Tools for Engineers) or at least one three-credit-hour engineering science course. Students who plan to go to graduate school are advised to take CHE 535 (Applications of Mathematics to Chemical Engineering) as a technical elective.

These programs are described on pages 53-54.
Bachelor of Science in Chemical Engineering

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Courses</td>
<td></td>
<td>Electrical and Computer Engineering Requirement</td>
<td>3</td>
</tr>
<tr>
<td>Chemical Engineering Requirements</td>
<td>40</td>
<td>ECE 383</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>18</td>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252</td>
<td></td>
<td>See the general education requirements, page 30.</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>8</td>
<td>Technical Electives</td>
<td>12</td>
</tr>
<tr>
<td>PHYS 123, 221</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirements</td>
<td>21</td>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>CHEM 125, 237, 239, 247, 343, 344</td>
<td></td>
<td>IPRO 296, 397, 496</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
<td>Total Credit Hours</td>
<td>131</td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chemical Engineering Curriculum

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Lab. Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 151</td>
<td>Calculus I</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 125</td>
<td>Principles of Chemistry II*</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CS 105</td>
<td>Introduction to Computer Programming</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CHE 100</td>
<td>Introduction to the Profession I</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Social sciences elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>13</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Lab. Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 152</td>
<td>Calculus II</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 123</td>
<td>Mechanics</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHE 101</td>
<td>Introduction to the Profession II</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>10</td>
<td>9</td>
<td>14</td>
</tr>
</tbody>
</table>

Semester 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Lab. Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 252</td>
<td>Introduction to Differential Equations</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>CHE 202</td>
<td>Material and Energy Balances</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 237</td>
<td>Organic Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 221</td>
<td>Electromagnetism and Optics</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
<td>9</td>
<td>18</td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Lab. Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 251</td>
<td>Multivariate and Vector Calculus</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>IPRO 296</td>
<td>Introduction to IPRO†</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 239</td>
<td>Organic Chemistry II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 343</td>
<td>Physical Chemistry I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHE 301</td>
<td>Fluid Mechanics and Heat-Transfer Operations</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or social science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
<td>2</td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 5

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Lab. Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 302</td>
<td>Mass-Transfer Operations</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CHE 351</td>
<td>Chemical Engineering Thermodynamics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 344</td>
<td>Physical Chemistry</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 247</td>
<td>Analytical Chemistry</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>13</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Lab. Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 317</td>
<td>Chemical Engineering Laboratory</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CHE 439</td>
<td>Numerical and Data Analysis</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ECE 383</td>
<td>Electric and Electronic Circuits</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 397</td>
<td>Interprofessional Project</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHE 433</td>
<td>Process Modeling and System Theory</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Technical elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
<td>5</td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 7

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Lab. Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 418</td>
<td>Chemical Engineering Laboratory II</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CHE 423</td>
<td>Chemical Reaction Engineering</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CHE 435</td>
<td>Process Control</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CHE 494</td>
<td>Chemical Process Design</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Technical elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>13</td>
<td>9</td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 8

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Lab. Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 406</td>
<td>Transport Phenomena</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHE 451</td>
<td>Chemical Process Thermodynamics</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>IPRO 496</td>
<td>Process Design IPRO†</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Technical elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
<td>2</td>
<td>16</td>
</tr>
</tbody>
</table>

Total Credit Hours

Total Credit Hours: 131

* Initial placement in CHEM 125 requires consent of the BCPS department.

† Satisfies part of the General Education Requirement for Interprofessional Projects. Only CHE and ENVE majors may register for IPRO 296 and IPRO 496.

This curriculum is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.
Professional Specializations

Students choosing one of the professional specializations should take a total of four courses in the specialization area.

1. Energy/Environment/Economics (E³)
 Program Adviser: H. Arastoopour

 Students must take a three-credit-hour course in special problems or research in energy from the following:
 - CHE 492 Senior Problems
 - MMAE 491 Undergraduate Research
 - MMAE 494 Undergraduate Design Project
 - MMAE 497 Undergraduate Special Topics
 - ECE 491 Undergraduate Research
 - ECE 497 Undergraduate Special Problems
 - IPRO 397 in energy/environmental-related areas

 In addition, they should choose three courses - one course from each of these three areas:

 Energy Sources and Conversion
 - CHE 465 Electrochemical Energy Conversion
 - CHE 481 Flow Through Porous Media and Fundamentals of Reservoir Engineering
 - CHE 483 Synthetic Energy
 - CHE 489 Fluidization
 - CHE 582 Interfacial and Colloidal Phenomena
 - ECE 319 Fundamentals of Power Engineering
 - MMAE 425 Direct Energy Conversion
 - CHE 565 Electrochemical Engineering

 Energy and Power Distribution and Utilization/Environment
 - CHE 430 Petrochemical Process Operations and Design
 - CHE 482 LNG Fundamentals
 - MMAE 423 Air Conditioning and Refrigeration
 - MMAE 424 Internal Combustion Engines
 - ENVE 404 Water and Wastewater Engineering
 - ENVE 463 Introduction to Air Pollution Control
 - ENVE 476 Engineering Control of Industrial Hazards
 - ENVE 480 Solid Waste Engineering
 - ENVE 485 Pollution Prevention
 - ECE 411 Power Electronics
 - ECE 419 Power Systems Analysis
 - ECE 420 Analytical Methods in Power Systems
 - ECE 434 Control Systems with Laboratory
 - ECE 435 Electrical, Magnetic and Optical Properties of Materials
 - ECE 436 Analysis and Processing of Discrete Signals
 - ECE 437 Digital Signal Processing I
 - ECE 438 Control Systems

 Energy Analysis, Economics and Policy
 - CHE 426 Statistical Tools for Engineers
 - CHE 541 The Role of Energy in Industrial Economies
 - CHE 543 Energy, Environment and Economics
 - ECON 423 Economic Analysis of Capital Investments
 - PS 338 Energy and Environmental Policy

 Appropriate substitutions may be made with the approval of E³ program advisers.

2. Environmental Engineering
 Program adviser: D. Moschandreas

 Students must take the following three courses:
 - ENVE 404 Water and Wastewater Engineering
 - ENVE 463 Introduction to Air Pollution Control
 - ENVE 481 Hazardous Waste Engineering

 In addition, they should choose one course from the following:
 - CHE 426 Statistical Tools for Engineers
 - ENVE 401 Introduction to Water Resources Engineering
 - ENVE 450 Analysis of Environmental Systems
 - ENVE 476 Engineering Control of Industrial Hazards
 - ENVE 480 Solid Waste Engineering
 - ENVE 485 Pollution Prevention

 Appropriate substitutions may be made with the approval of the program adviser.

3. Polymer Science and Engineering
 Program adviser: D. Venerus

 The program embraces polymer chemistry, characterization, structure and properties, as well as the manufacture of polymeric raw materials and their processing into finished products. Four courses (12 credit hours) should be taken as follows:

 Students must take one of the following two courses:
 - CHE 450 Principles of Polymer Science and Engineering
 - CHEM 435 Introduction to Polymers

 In addition, they should choose two courses (six credit hours) from the following:
 - CHE 455 Polymer Processing
 - CHE 492 Senior Problems
 - CHE 538 Polymerization Reaction Engineering
 - CHE 555 Polymer Processing
 - CHE 575 Polymer Rheology
 - CHE 581 Processing and Applications of Polymer Composite Materials
 - CHEM 535 Advanced Polymer Chemistry
 - CHEM 537 Polymer Chemistry Laboratory
 - CHEM 542 Characterization of Polymers
MMAE 467 Fundamental Principles of Polymer Materials
MMAE 483 Structure/Property Relationship in Polymers
MMAE 487 Fiber-Reinforced Polymer Composite Materials
MMAE 579 Characterization of Polymers
MMAE 580 Structure and Property of Polymers
MMAE 581 Theory of Mechanical Behavior of Polymers

Students should take up to one course (three credit hours) from the following:
CHE 426 Statistical Tools for Engineers
CHE 489 Fluidization
CHE 582 Interfacial and Colloid Phenomena
FPE 541 Principles of Food Packaging
MMAE 451 Finite Element Methods in Engineering
MMAE 485 Manufacturing Processes

Appropriate substitutions may be made with the approval of the program adviser.

4. Bioengineering
Program advisers: S. Parulekar and V. Perez-Luna

Bioengineering has two career specializations:

Biomedical Engineering
Four courses (12 credit hours) must be taken and are allocated as follows:
BIOL 107 General Biology Lectures
BIOL 115 Human Biology
CHE 411 Introduction to Bioengineering

One elective is chosen from the following:
BIOL 214 Genetics and Genetics Technology
BIOL 403 Biochemistry Lectures
BIOL 414 Genetics for Engineering Scientists
BIOL 430 Animal Physiology: Lecture
BIOL 445 Cell Biology
CHE 492 Senior Problems
CHE 510 Transport Phenomena in Living Systems

Biotechnology
Students must take the following course:
CHE 411 Introduction to Bioengineering

Three electives are chosen from the following:
BIOL 107 General Biology Lectures
BIOL 214 Genetics and Genetic Technology
BIOL 403 Biochemistry Lectures
BIOL 414 Genetics for Engineering Scientists
BIOL 423 Microbial Genetics Laboratory
BIOL 445 Cell Biology
CHE 577 Biochemical Engineering
FPE 505 Food Microbiology

5. Process Design and Operation
Program adviser: D. Chmielewski

For students interested in design, operation, monitoring, optimization and control of chemical processes.

Two courses (six credit hours) must be taken from the following:
CHE 426 Statistical Tools for Engineers
CHE 431 Artificial Intelligence Applications in Engineering
CHE 437 Discrete Time Systems and Computer Control
CHE 507 Computer-Aided Design
CHE 508 Process-Design Optimization
CHE 528 Analysis and Simulation of Chemical Processing;
CHE 530 Advanced Process Control
CHE 532 Process Modeling
CHE 560 Statistical Quality and Process Control

Two courses may be selected from the following (only one may be an ENVE course):
CHE 402 Introduction to Microelectronics Fabrication Technology
CHE 430 Petrochemical Process Operations and Design
CHE 455/555 Polymer Processing
CHE 465 Electrochemical Energy Conversion
CHE 475 Food Engineering I
CHE 476 Food Engineering II
CHE 489 Fluidization
CHE 492 Senior Problems
CHE 571 Food Process Engineering
CHE 572 Advanced Food Process Engineering
ENVE 450 Analysis of Environmental Systems
ENVE 476 Engineering Control of Industrial Hazards
ENVE 485 Pollution Prevention
FPE 521 Food Process Engineering
FPE 522 Advanced Food Process Engineering
Environmental Engineering

Environmental engineering is a dynamic multidisciplinary profession that draws on fundamentals from the biological, physical, mathematical and social sciences, as well as the various engineering disciplines. Environmental engineering can be defined as the science and art of planning, designing, constructing and managing solutions to environmental problems. These problems are often multimedia, involving contaminant transport through air, water and solid phases in the environment. Furthermore, the scale of the systems involved is enormous, ranging from global warming to marine pollution, to treatment systems for emissions from a specific industry, to microbial degradation processes. Environmental engineers are involved in resource development, allocation and management to achieve and maintain sustainable development.

Bachelor of Science in Environmental Engineering

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Engineering Requirements</td>
<td>29</td>
</tr>
<tr>
<td>ENVE 100, 101, 302, 305, 404, 407, 426, 463, 481, 490, 494</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>18</td>
</tr>
<tr>
<td>MATH 151, 152, 251</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>8</td>
</tr>
<tr>
<td>PHYS 123, 221</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirements</td>
<td>18</td>
</tr>
<tr>
<td>CHEM 125, 237, 247, 343, 344</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
</tr>
<tr>
<td>Biology Requirements</td>
<td>6</td>
</tr>
<tr>
<td>BIOL 107, 210</td>
<td></td>
</tr>
<tr>
<td>Engineering Course Requirements</td>
<td>18</td>
</tr>
<tr>
<td>CHE 202, 301, 302, 351, 423, 433</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Science Requirements</td>
<td>21</td>
</tr>
<tr>
<td>See general education requirements, page 30.</td>
<td></td>
</tr>
<tr>
<td>Technical Electives</td>
<td>6</td>
</tr>
<tr>
<td>IPRO 296, 397, 496</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>132</td>
</tr>
</tbody>
</table>
Environmental Engineering Curriculum

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Cr. Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVE 100</td>
<td>Introduction to the Profession I</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Calculus I</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 125</td>
<td>Principles of Chemistry II*</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CS 105</td>
<td>Introduction to Computer Programming I</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 107</td>
<td>General Biology Lectures</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Totals 12 8 16

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Cr. Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVE 101</td>
<td>Introduction to the Profession II</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Calculus II</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 123</td>
<td>Mechanics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Humanities elective</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Totals 10 9 14

Semester 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Cr. Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 252</td>
<td>Introduction to Differential Equations</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>CHE 202</td>
<td>Material and Energy Balances</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 221</td>
<td>Electricity and Magnetism</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 237</td>
<td>Organic Chemistry I</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>BIO 210</td>
<td>Microbiology Lectures</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Totals 15 9 18

Semester 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Cr. Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 251</td>
<td>Multivariate and Vector Calculus</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>CHE 301</td>
<td>Fluid Mechanics and Heat-Transfer Operations</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CHEM 343</td>
<td>Physical Chemistry I</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Social science elective</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Humanities elective</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>IPRO 296</td>
<td>Introduction to IPRO**</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Totals 16 2 17

Semester 5

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Cr. Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVE 302</td>
<td>Environmental Chemistry</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CHE 302</td>
<td>Mass Transfer Operations</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CHE 351</td>
<td>Chemical Process Thermodynamics</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CHEM 247</td>
<td>Analytical Chemistry</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 344</td>
<td>Physical Chemistry II</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Totals 12 13 16

Semester 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Cr. Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVE 305</td>
<td>Geochemical Cycles</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>ENVE 463</td>
<td>Introduction to Air Pollution Control</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>ENVE 404</td>
<td>Water and Wastewater Engineering</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>IPRO 397</td>
<td>Interprofessional Project</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CHE 433</td>
<td>Process Modeling and System Theory</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Humanities or social science elective</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Totals 18 0 18

Semester 7

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Cr. Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 423</td>
<td>Chemical Reaction Engineering</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ENVE 426</td>
<td>Statistical Tools for Engineers</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>ENVE 494</td>
<td>Environmental Engineering Design</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ENVE 407</td>
<td>Environmental Monitoring</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Technical elective</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Social science elective</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Totals 14 7 17

Semester 8

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Cr. Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVE 490</td>
<td>Environmental Processes Lab</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>ENVE 481</td>
<td>Hazardous Waste Engineering</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 496</td>
<td>Process Design IPRO**</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Technical elective</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Humanities elective</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Social science elective</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Totals 13 8 16

Total Credit Hours

132

* Initial placement in CHEM 125 requires consent of the BCPS department.

** Satisfies part of the General Education Requirement for Interprofessional Projects. Only CHE and ENVE majors may register for IPRO 296 and IPRO 496.
Double-Degree Option -
Chemical and Environmental Engineering Curriculum

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE/ENVE 100</td>
<td>Introduction to the Profession I</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Calculus I</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 125</td>
<td>Principles of Chemistry II</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 107</td>
<td>General Biology Lectures</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CS 105</td>
<td>Intro to Computer Programming</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>13</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE/ENVE 101</td>
<td>Introduction to the Profession II</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Calculus II</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 123</td>
<td>Mechanics</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Humanities elective</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>10</td>
<td>9</td>
<td>14</td>
</tr>
</tbody>
</table>

Semester 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 252</td>
<td>Introduction to Differential Equations</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>CHE 202</td>
<td>Material and Energy Balances</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 221</td>
<td>Electromagnetism and Optics</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 237</td>
<td>Organic Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>BIO 210</td>
<td>Microbiology Lectures</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>15</td>
<td>9</td>
<td>18</td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPRO 296</td>
<td>Introduction to IPRO*</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Multivariate and Vector Calculus</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>CHE 301</td>
<td>Fluid Mechanics and Heat-Transfer Operations</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 343</td>
<td>Physical Chemistry I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 239</td>
<td>Organic Chemistry II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Humanities elective</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>16</td>
<td>2</td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 5

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVE 302</td>
<td>Environmental Chemistry</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CHE 302</td>
<td>Mass Transfer Operations</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CHE 351</td>
<td>Chemical Transfer</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 344</td>
<td>Physical Chemistry II</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Social science elective</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>13</td>
<td>9</td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVE 305</td>
<td>Geochemical Cycles</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHE 433</td>
<td>Process Modeling</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 397</td>
<td>Interprofessional Project</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ENVE 404</td>
<td>Water and Wastewater Engineering</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHE 317</td>
<td>Chemical Engineering Laboratory I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHE 439</td>
<td>Numerical and Data Analysis</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>15</td>
<td>5</td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 7

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 418</td>
<td>Chemical Engineering Laboratory II</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CHE 423</td>
<td>Chemical Reaction Engineering</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CHE/ENVE 494</td>
<td>Chemical Process Design / Environmental Engineering Design</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CHE 435</td>
<td>Process Control</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 247</td>
<td>Analytical Chemistry</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Social science elective</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>12</td>
<td>13</td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 8

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVE 490</td>
<td>Environmental Processes</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ENVE 481</td>
<td>Hazardous Waste Engineering</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ENVE 463</td>
<td>Introduction to Air Pollution Control</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 496</td>
<td>Process Design IPRO</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CHE 406</td>
<td>Transport Phenomena</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHE 451</td>
<td>Chemical Process Thermodynamics</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>12</td>
<td>8</td>
<td>15</td>
</tr>
</tbody>
</table>

ROTC students require five years to complete the double-degree program.

CHE/ENVE 296 and 496 satisfy part of the General Education Requirement for Interprofessional Projects. Only CHE and ENVE majors may register for these courses.

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>ENVE 407</td>
<td>Environmental Monitoring</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CHE 426</td>
<td>Statistical Tools for Engineers</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 383</td>
<td>Electric and Electronic Circuits</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social science elective</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities elective</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities or social science elective</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>16</td>
<td>3</td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Civil and Architectural Engineering

Civil Engineering
Department Web site: www.iit.edu/~ce

The objective of the civil engineering program is to produce graduates who are prepared to enter the civil engineering profession. Also, this program will prepare students to begin graduate studies in engineering. This program provides breadth in core sub-disciplines and depth in at least one area of specialization.

Civil engineering is the original of the engineering disciplines. With the increase in population, the growing complexity of industries, and changing urban centers, the civil engineer’s task—applying science to the control and utilization of the environment for the total benefit of mankind—represents a challenge unsurpassed in all of engineering.

The civil engineer often is confronted with conditions so variable and complex that they cannot be precisely defined by science and mathematics. Therefore, a knowledge of the arts and social sciences, as well as the physical sciences, is essential. In addition, because civil engineering requires overall planning of very large projects whose components involve many other disciplines, it is also necessary to have knowledge of management techniques. The goal of the civil engineering degree program is to provide an education that enables graduates to make far-reaching decisions that draw not only from technical knowledge but also from integrity and judgment.

In the professional courses, classroom lectures are supplemented by laboratory practice, including the study of materials, concrete, hydraulics, environmental engineering, geotechnical engineering, and surveying. The principal functional areas that are considered subdivisions of civil engineering are structural engineering, transportation engineering, geotechnical engineering, environmental engineering, water resources engineering, and construction management.

The Department of Civil and Architectural Engineering provides introductory undergraduate education in these six subdisciplines of civil engineering and provides professional specializations in the areas of structural, geotechnical, transportation, civil-environmental, construction engineering and architectural engineering. The department also offers graduate degree programs and conducts research in the areas of structural engineering, geotechnical engineering, transportation engineering, and construction engineering and management. In addition, the department provides undergraduate service courses to the College of Architecture in the area of structural engineering and through minors in construction management and fire protection and safety engineering.

Students may choose a professional specialization as described on the following pages, or one of the following minors: Air Force Aerospace Studies, Military Science, Naval Science, and Fire Protection and Safety Engineering (see pages 109-111).

Architecture students who plan to pursue a master’s degree in structural engineering should take CAE 303, 304, 307, 310, 315, 431 and 432 in place of CAE 287, 351 and 352. Students should consult the IIT Bulletin: Graduate Programs for additional details.

All civil engineering students are required to take the Fundamentals of Engineering (FE) examination during their senior year. The examination is offered by the State of Illinois in October and April. Students should contact the Department of Civil and Architectural Engineering for information concerning this examination.

Faculty

Chair
Jamshid Mohammadi
228 Alumni Memorial
Ext. 73540

Professors
Arditi, Guralnick (Perlstein Distinguished Professor), Khisty, Mohammadi

Adjunct Professors
Carreira, Gill, Paintal, Pinjarkar

Associate Professors
Budiman, O’Leary (Associate Chair), Shen, Shi

Adjunct Associate Professors
Domel, Jahedi

Assistant Professors
DeSantiago, Megri

Adjunct Assistant Professors
Fazio, Frano, Lemming, Nordmeyer

Senior Lecturer
Novak

Faculty Emerti
Chu, Dygdon, Fiesenheiser, Hrachovsky, Loving, Milbradt

58
Bachelor of Science in Civil Engineering

Required Courses

<table>
<thead>
<tr>
<th>Course Requirements</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Engineering Requirements</td>
<td>52</td>
</tr>
<tr>
<td>CAE 100, 101, 105, 221, 301, 302, 303, 304, 307, 310, 312, 315, 323, 419, 431, 432, 457, 470</td>
<td></td>
</tr>
<tr>
<td>CAE Electives</td>
<td>9</td>
</tr>
<tr>
<td>Technical Electives*</td>
<td>9</td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>18</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>11</td>
</tr>
<tr>
<td>PHYS 123, 221, 224</td>
<td></td>
</tr>
</tbody>
</table>

Engineering Course Requirements

<table>
<thead>
<tr>
<th>Course Requirements</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Requirement</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 124</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td></td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
</tr>
<tr>
<td>Technical Electives*</td>
<td>9</td>
</tr>
<tr>
<td>MMAE 201, 202, 305</td>
<td></td>
</tr>
</tbody>
</table>

Humanities and Social Sciences Requirements

<table>
<thead>
<tr>
<th>Course Requirements</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>See general education requirements, page 30</td>
<td></td>
</tr>
</tbody>
</table>

Mathematics Requirements

<table>
<thead>
<tr>
<th>Course Requirements</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 151, 152, 251, 252</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours

<table>
<thead>
<tr>
<th>Course Requirements</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Credit Hours</td>
<td>135</td>
</tr>
</tbody>
</table>

* Of the total of three technical electives, one must be a junior-year IPRO and another must be a senior-year IPRO.
Civil Engineering Curriculum

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 151</td>
<td>Calculus I</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 124</td>
<td>Principles of Chemistry I</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CAE 100</td>
<td>Introduction to the Profession I</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CAE 105</td>
<td>Geodetic Science</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Humanities</td>
<td>or social science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Totals
13 10 17

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 152</td>
<td>Calculus II</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>CS 105</td>
<td>Introduction to Computing</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CAE 101</td>
<td>Introduction to the Profession II</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 123</td>
<td>Mechanics</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Humanities</td>
<td>or social science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Totals
12 10 16

Semester 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 251</td>
<td>Calculus III</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MMAE 201</td>
<td>Mechanics of Solids I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CAE 221</td>
<td>Engineering Geology</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 221</td>
<td>Electromagnetism and Optics</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Humanities</td>
<td>or social science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Totals
15 5 17

Semester 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 252</td>
<td>Introduction to Differential Equations</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MMAE 305</td>
<td>Dynamics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MMAE 202</td>
<td>Mechanics of Solids II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 224</td>
<td>General Physics III</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Humanities</td>
<td>or social science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Totals
16 0 16

Semester 5

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAE 301</td>
<td>Hydraulics and Hydrology</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CAE 303</td>
<td>Structural Design I</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CAE 304</td>
<td>Structural Analysis I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CAE 312</td>
<td>Engineering Systems Analysis</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CAE 315</td>
<td>Materials of Construction</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CAE or technical elective*</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Totals
15 9 18

Semester 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAE 302</td>
<td>Fluid Mechanics and Hydraulics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>cm 307</td>
<td>Structural Design II</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>cm 310</td>
<td>Structural Analysis II</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CAE 323</td>
<td>Soil Mechanics</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CAE or technical elective*</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Humanities</td>
<td>or social science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Totals
15 9 18

Semester 7

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAE 419</td>
<td>Transportation Engineering and Design</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CAE 431</td>
<td>Steel and Timber Design</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CAE 457</td>
<td>Geotechnical Foundation Design</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CAE 470</td>
<td>Construction Methods</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CAE or technical elective*</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Humanities</td>
<td>or social science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Totals
17 3 18

Semester 8

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect.</th>
<th>Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAE 432</td>
<td>Concrete and Foundation Design</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CAE or technical elective*</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CAE or technical elective</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Humanities</td>
<td>or social science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Totals
15 0 15

Total Credit Hours
135

This program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).

Of the total of three technical electives, one must be a junior-year IPRO and another must be a senior-year IPRO.
Professional Specializations in Civil Engineering

Students who select an area of specialization must take a minimum of nine credit hours from the following technical electives listed under the respective area of specialization. Three additional credit hours may be any 400-level CAE course taken with prior approval of the student's adviser and chair.

Structural Engineering: CAE 408, Bridge and Structural Design; CAE 420, Introduction to Dynamics of Structures; CAE 430, Probability Concepts in Civil Engineering; CAE 435, Experimental Analysis of Structures; and CAE 442, Finite Element Methods in Framed Structures.

Construction Engineering and Management: CAE 471, Construction Planning and Scheduling; CAE 472, Construction Site Operation; and CAE 473, Construction Project Administration.

Geotechnical Engineering: CAE 415, Pavement Design, Construction and Maintenance; CAE 442, Finite Element Methods in Framed Structures; and CAE 486, Soil and Site Improvement.

Civil-Environmental Engineering: ENVE 401, Introduction to Water Resources Engineering; ENVE 480, Solid Waste Engineering; and CAE 482, Hydraulic Design of Open Channel Systems.

Architectural Engineering: Consult the department for advice on appropriate courses.
Architectural Engineering
Department Web site: www.iit.edu/~ce

The objective of the architectural engineering program is to produce graduates who are prepared to enter the architectural engineering profession. Also, this program will prepare students to begin graduate studies in engineering. This program provides breadth in core sub-disciplines and depth in at least one area of specialization.

Architectural engineering is a building-oriented discipline, which offers students an opportunity to obtain an engineering education specializing in building architecture, building-system integration, and structural and computer-aided design.

Professional architectural engineers are concerned with the structural integrity of buildings; the design and analysis of HVAC (Heating, Ventilating and Air Conditioning), plumbing, fire protection and electrical systems; acoustic; lighting; energy conservation; building science and the study of building performance; and the management of construction resources and schedules. Graduates of the architectural engineering program will be well prepared for careers as consulting engineers, building contractors, construction managers, structural engineers and knowledgeable specialists in related areas of building design and analysis.

Architectural engineering shares much in common with civil and mechanical engineering but is distinct in its exclusive concentration on building projects. Architectural engineering students should have an aptitude in and an appreciation of the following areas of knowledge: basic principles of mathematics; physics and chemistry; manual and computer-aided drafting and design; surveying; construction materials; engineering mechanics; structural analysis and design; building-system integration; and professional practice and ethics.

Bachelor of Science in Architectural Engineering

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Engineering Requirements</td>
<td>60</td>
</tr>
<tr>
<td>Architecture Requirements</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 204</td>
<td></td>
</tr>
<tr>
<td>Technical Electives*</td>
<td>15</td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>18</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>11</td>
</tr>
<tr>
<td>PHYS 123, 221, 224</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirement</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 124</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
</tr>
<tr>
<td>Engineering Course Requirements</td>
<td>3</td>
</tr>
<tr>
<td>ECE 383</td>
<td></td>
</tr>
<tr>
<td>Humanities Requirement</td>
<td>3</td>
</tr>
<tr>
<td>AAH 120</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Science Electives</td>
<td>18</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>137</td>
</tr>
</tbody>
</table>

* Of the total of five technical electives, one must be a junior-year IPRO, another must be a senior-year IPRO, and one must be a CAE course.
Architectural Engineering Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Lab. Cr.</th>
<th>Semester 2</th>
<th>Lab. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAE 100</td>
<td>Introduction to the Profession I</td>
<td>1 2 2</td>
<td>CAE 101</td>
</tr>
<tr>
<td>CAE 105</td>
<td>Geodetic Science</td>
<td>2 3 3</td>
<td>CS 105</td>
</tr>
<tr>
<td>CHEM 124</td>
<td>Principles of Chemistry I</td>
<td>3 3 4</td>
<td>PHYS 123</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Calculus I</td>
<td>4 2 5</td>
<td>MATH 152</td>
</tr>
<tr>
<td>Humanities or social science elective</td>
<td>3 0 3</td>
<td>Humanities or social science elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td>13 10 17</td>
<td>Totals</td>
<td>12 10 16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Lab. Cr.</th>
<th>Semester 4</th>
<th>Lab. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAE 202</td>
<td>Statics and Strength of Materials</td>
<td>4 0 4</td>
<td>AAH 120</td>
</tr>
<tr>
<td>PHYS 221</td>
<td>Electromagnetism and Optics</td>
<td>3 3 4</td>
<td>PHYS 224</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Multivariate and Vector Calculus</td>
<td>4 0 4</td>
<td>MATH 252</td>
</tr>
<tr>
<td>ARCH 204</td>
<td>Architectural Design Studio</td>
<td>0 9 3</td>
<td>CAE 302</td>
</tr>
<tr>
<td>Humanities or social science elective</td>
<td>3 0 3</td>
<td>CAE 309</td>
<td>Thermodynamics and Heat Transfer</td>
</tr>
<tr>
<td>Totals</td>
<td>14 12 18</td>
<td>Totals</td>
<td>17 0 17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Lab. Cr.</th>
<th>Semester 6</th>
<th>Lab. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAE 312</td>
<td>Engineering Systems Analysis</td>
<td>3 0 3</td>
<td>CAE 307</td>
</tr>
<tr>
<td>CAE 303</td>
<td>Structural Design I</td>
<td>2 3 3</td>
<td>CAE 315</td>
</tr>
<tr>
<td>CAE 304</td>
<td>Structural Analysis I</td>
<td>3 0 3</td>
<td>CAE 323</td>
</tr>
<tr>
<td>CAE 331</td>
<td>Building Science</td>
<td>3 0 3</td>
<td>CAE 334</td>
</tr>
<tr>
<td>ECE 383</td>
<td>Electric and Electronic Circuits</td>
<td>3 0 3</td>
<td>CAE 461</td>
</tr>
<tr>
<td>Humanities or social science elective</td>
<td>3 0 3</td>
<td>Technical elective*</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td>17 3 18</td>
<td>Totals</td>
<td>14 12 18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Lab. Cr.</th>
<th>Semester 8</th>
<th>Lab. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAE 401</td>
<td>Building Systems Integration Studio I</td>
<td>1 3 2</td>
<td>CAE 471</td>
</tr>
<tr>
<td>CAE 462</td>
<td>Construction Drawings and Cost Estimation</td>
<td>2 6 4</td>
<td>Technical elective*</td>
</tr>
<tr>
<td>CAE 463</td>
<td>Building Enclosure Design</td>
<td>3 0 3</td>
<td>Technical elective*</td>
</tr>
<tr>
<td>CAE 464</td>
<td>HVAC Systems Design</td>
<td>3 0 3</td>
<td>Technical elective*</td>
</tr>
<tr>
<td>Technical elective*</td>
<td>3 0 3</td>
<td>Humanities and social science elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Humanities or social science elective</td>
<td>3 0 3</td>
<td>Technical elective*</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td>15 9 18</td>
<td>Totals</td>
<td>15 9 15</td>
</tr>
</tbody>
</table>

Total Credit Hours 137

* Of the total of four technical electives, one must be a junior-year IPRO, another must be a senior-year IPRO, and one must be a CAE course.
Engineering Graphics
Department Web site: www.iit.edu/~ce

Engineering graphics is an indispensable communication and design tool, which is concerned with the graphical representation of designs and specifications for physical objects and data relationships as used in engineering, science, business and technical work. The graphic language, with the symbolic and verbal languages, enables those engaged in technology to communicate effectively, making it possible for new ideas, designs and developments to be transformed into useful consumer products. With the increase in technological development, the well-trained engineer, scientist or technician must be able to make correct graphical representations of engineering structures, designs and data relationships, as well as possess an ability to express ideas quickly and accurately through the use of the graphic language.

Optional Programs in Engineering Graphics

Certificate Programs

Recognizing the need for drafters and designers with a strong background in special areas of graphics, the Department of Civil and Architectural Engineering offers the following engineering graphics certificate programs. These programs are designed to prepare specialists in graphics for positions in business and industry. Students completing the specified courses with satisfactory grades will be awarded a certificate of completion.

Certificate in Architectural Technology Curriculum

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG 105</td>
<td>Engineering Graphics and Design (1-2-2)*</td>
<td></td>
</tr>
<tr>
<td>EG 308</td>
<td>Architectural Drawing I (2-2-3)</td>
<td></td>
</tr>
<tr>
<td>EG 309</td>
<td>Architectural Drawing II (2-2-3)</td>
<td></td>
</tr>
</tbody>
</table>

Certificate in Engineering Graphics and CAD Curriculum

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG 105</td>
<td>Engineering Graphics and Design (1-2-2)</td>
<td></td>
</tr>
<tr>
<td>EG 305</td>
<td>Advanced Engineering Graphics and Design (2-2-3)</td>
<td></td>
</tr>
<tr>
<td>EG 306</td>
<td>Engineering Descriptive Geometry (2-2-3)</td>
<td></td>
</tr>
<tr>
<td>EG 405</td>
<td>Mechanical Design Graphics (2-2-3)</td>
<td></td>
</tr>
<tr>
<td>EG 406</td>
<td>Technical and Pictorial Illustration (2-2-3)</td>
<td></td>
</tr>
<tr>
<td>EG 419</td>
<td>Computer Graphics in Engineering (2-2-3)</td>
<td></td>
</tr>
</tbody>
</table>

Professional Specialization in Engineering Graphics

The department offers a comprehensive series of special courses in engineering graphics that a student may take as electives in areas related to individual professional goals. Consult the department for advice on appropriate courses.

Graduate Courses

Graduate courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty adviser. See the current IIT Bulletin: Graduate Programs for course descriptions.

* Numbers in parentheses indicate lecture hours-laboratory hours-credit hours.
Computer Science
Department Web site: www.cs.iit.edu

Computers have changed what we do and how we do it -- in our homes, in our offices, and throughout our world. The discipline of computer science focuses upon the many challenging problems encountered in the development and use of computers and computer software. Areas of study in computer science range from theoretical analyses into the nature of computing and computing algorithms, through the development of advanced computing devices and computer networks, to the design and implementation of sophisticated software systems.

Faculty

Chair
Ed Reingold
228F Stuart Building
Ext. 75150

Professors
Carlson, Frieder, Reingold

Associate Professors
I. Burnstein, Greene, Korel, Roberge, Sun

Assistant Professors
Calinescu, Chang, Dickens, Grossman, Hood, Li, Orlandic, Wan

Research Faculty
Elrad, Evens, Zhang

Visiting Faculty
Agam

Adjunct Faculty
Bader, Biernat, Drakopoulos, Lidinsky, Soneru, Woyna

Senior Lecturers
M. Bauer, Goharian, Lincke-Salecker, Manov

Lecturers
Agun, Bole, Dominiak, Hield, Jackson, Smith, Trygstad, Winans, Zlatea

Instructors
Bistricanu, Koutsogiannakis, Mueller

Faculty Emeriti
C. Bauer
Computer Science

The department offers two undergraduate programs in computer science: a Bachelor of Science in Computer Science and Bachelor of Science with specialization in Computer Information Systems. Both programs provide an excellent background in computer science and allow for ample study in other areas. Where these programs differ is in the approach they take to computer science. The B.S. in Computer Science provides an in-depth experience focusing on the theory and practice of computer science while the B.S. in Computer Information Systems provides a more interdisciplinary experience, balancing study in computer science with study in another field. In addition to these programs in computer science, the Department of Computer Science and the Department of Electrical and Computer Engineering jointly offer a Bachelor of Science in Computer Engineering. This program focuses on both the digital electronics hardware used in computer systems and the software that controls this hardware, with an emphasis on the design and implementation of computer-controlled systems. This program is described in detail on page 75.

All three programs begin with a set of introductory courses that work together to provide students with a firm foundation in computer science. These introductory courses include weekly labs in which students use state-of-the-art software development techniques (object-oriented programming in C++, for instance) to create solutions to interesting problems. The department’s unique four-phase laboratory model encourages student creativity by providing ample opportunity for constructive feedback on each student’s efforts. Having completed the introductory core, a student is prepared to work independently within a well-structured design framework—in the classroom or on the job.

The last two years of study build upon this foundation. The Bachelor of Science in Computer Science focuses on the concepts and techniques used in the design and development of advanced software systems. Students in this program explore the conceptual underpinnings of computer science—its fundamental algorithms, programming languages, operating systems, and software engineering techniques. In addition, students choose from a rich set of electives—including computer graphics, artificial intelligence, database systems, computer architecture, and computer networks, among others. As with the introductory sequence, these advanced courses stress “hands-on” learning by doing. A generous allotment of free electives allows students to combine study in computer science with study in another field—either by taking a well-defined specialized minor in another discipline or by working with an adviser to formulate a program that combines experiences across disciplines.

The B.S. in with specialization in Computer Information Systems program emphasizes the use of computers as sophisticated problem-solving tools. Students in this program pursue an interdisciplinary course of study that combines a solid foundation in computer science with a focus in another discipline. This program is designed for students who seek to blend their computer science abilities with skills specific to another domain to solve problems in that domain. Examples include computing with a business focus (e.g., management information systems) or computing with a natural science focus (e.g., computational physics).

Bachelor of Science in Computer Science

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science Requirements</td>
<td>32</td>
</tr>
<tr>
<td>CS 100, 101, 105, 106, 330, 331, 350, 351, 430, 440, 450, 487</td>
<td></td>
</tr>
<tr>
<td>Computer Science Electives</td>
<td>15</td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>17</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 474</td>
<td></td>
</tr>
<tr>
<td>Mathematics Electives</td>
<td>3</td>
</tr>
<tr>
<td>Science/Engineering Requirements</td>
<td>8</td>
</tr>
<tr>
<td>PHYS 123, 221</td>
<td></td>
</tr>
<tr>
<td>Science/Engineering Electives</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities Requirements</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 374 or CS 485</td>
<td></td>
</tr>
<tr>
<td>Humanities 100-level course</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
</tr>
<tr>
<td>Social Science Electives</td>
<td>12</td>
</tr>
<tr>
<td>(including at least three hours in economics)</td>
<td></td>
</tr>
<tr>
<td>Non-Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Free Electives</td>
<td>12</td>
</tr>
</tbody>
</table>

Total Credit Hours 129
Computer Science Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Lab. Cr.</th>
<th>Semester 2</th>
<th>Lab. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 100 Introduction to the Profession I</td>
<td>1 2 2</td>
<td>CS 101 Introduction to the Profession II</td>
<td>0 4 2</td>
</tr>
<tr>
<td>CS 105 Introduction to Computer Programming I</td>
<td>2 1 2</td>
<td>CS 106 Introduction to Computer Programming II</td>
<td></td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>4 1 5</td>
<td>MATH 152 Calculus II</td>
<td>4 1 5</td>
</tr>
<tr>
<td>Humanities 100-level course</td>
<td>3 0 3</td>
<td>PHYS 123 Mechanics</td>
<td>3 3 4</td>
</tr>
<tr>
<td>Social science elective</td>
<td>3 0 3</td>
<td>Humanities elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td>13 4 15</td>
<td>Totals</td>
<td>12 9 16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Lab. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lect. Hrs.</td>
</tr>
<tr>
<td>CS 330 Discrete Structures</td>
<td>3 0 3</td>
</tr>
<tr>
<td>CS 331 Data Structures and Algorithms</td>
<td>2 2 3</td>
</tr>
<tr>
<td>MATH 251 Multivariate and Vector Calculus</td>
<td>4 0 4</td>
</tr>
<tr>
<td>PHYS 221 Electromagnetism and Optics</td>
<td>3 3 4</td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td>15 5 17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Lab. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lect. Hrs.</td>
</tr>
<tr>
<td>CS 351 Systems Programming</td>
<td>2 2 3</td>
</tr>
<tr>
<td>Computer science elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Science/engineering elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Free elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td>14 2 15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Lab. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lect. Hrs.</td>
</tr>
<tr>
<td>IPRO II Interprofessional Project II</td>
<td>1 6 3</td>
</tr>
<tr>
<td>CS 450 Operating Systems I</td>
<td>3 0 3</td>
</tr>
<tr>
<td>CS 487 Software Engineering I</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Computer science elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Social science elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Free elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td>16 6 18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8</th>
<th>Lab. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lect. Hrs.</td>
</tr>
<tr>
<td>Computer Science elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Computer Science elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>PHIL 374 Moral Issues in Computer Science or</td>
<td></td>
</tr>
<tr>
<td>CS 485 Computers in Society</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Non-technical elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Free elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td>15 0 15</td>
</tr>
</tbody>
</table>

Total Credit Hours 129
Bachelor of Science with specialization in computer information systems

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialized Courses</td>
<td></td>
</tr>
<tr>
<td>CS 100, 101, 105, 106, 330, 331, 350, 351</td>
<td>20</td>
</tr>
<tr>
<td>Computer Science Technical Electives*</td>
<td>15</td>
</tr>
<tr>
<td>Computer Science Electives</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics Requirement</td>
<td>5</td>
</tr>
<tr>
<td>MATH 151</td>
<td></td>
</tr>
<tr>
<td>Mathematics Elective</td>
<td>3</td>
</tr>
<tr>
<td>Science Requirements</td>
<td></td>
</tr>
<tr>
<td>BIOL 107 or 115</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 124</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 123</td>
<td>4</td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities Requirements</td>
<td>3</td>
</tr>
<tr>
<td>Humanities 100-level course</td>
<td></td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
</tr>
<tr>
<td>Psychology Requirements</td>
<td></td>
</tr>
<tr>
<td>PSYCH 221,301</td>
<td>6</td>
</tr>
<tr>
<td>Social Science Requirement</td>
<td>3</td>
</tr>
<tr>
<td>PS 200</td>
<td></td>
</tr>
<tr>
<td>Social Science Electives</td>
<td>6</td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Minor Courses</td>
<td>15</td>
</tr>
<tr>
<td>Free Electives</td>
<td>18</td>
</tr>
</tbody>
</table>

Total Credit Hours 129

* Computer science technical electives are designated with a (T) in the course descriptions.
Computer Information Systems Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Lab. Cr.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lect. Hrs.</td>
<td>Hrs.</td>
</tr>
<tr>
<td>CS 100 Introduction to the Profession I</td>
<td>1 2 2</td>
<td></td>
</tr>
<tr>
<td>CS 105 Introduction to Computer Programming</td>
<td>2 1 2</td>
<td></td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>4 1 5</td>
<td></td>
</tr>
<tr>
<td>Humanities 100-level course</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>PSYCH 221 Human Behavior Growth and Learning</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>13 4 15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
<th>Lab. Cr.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lect. Hrs.</td>
<td>Hrs.</td>
</tr>
<tr>
<td>CS 101 Introduction to the Profession II</td>
<td>0 4 2</td>
<td></td>
</tr>
<tr>
<td>CS 106 Introduction to Computer Programming II</td>
<td>2 1 2</td>
<td></td>
</tr>
<tr>
<td>Mathematics elective</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>BIOL 115 Human Biology OR</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Social science elective</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>14 5 16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 330 Discrete Structures</td>
<td>3 0 3</td>
</tr>
<tr>
<td>CS 331 Data Structures and Algorithms</td>
<td>2 2 3</td>
</tr>
<tr>
<td>CHEM 124 Principles of Chemistry I</td>
<td>4 0 4</td>
</tr>
<tr>
<td>PS 200 American Government</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td>15 2 16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 350 Computer Organization and Assembly Language Programming</td>
<td>2 2 3</td>
</tr>
<tr>
<td>Computer science technical elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>PHYS 123 Mechanics</td>
<td>3 3 4</td>
</tr>
<tr>
<td>Minor course</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Computer science elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td>14 5 16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 351 Systems Programming</td>
<td>2 2 3</td>
</tr>
<tr>
<td>Science elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Minor course</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Free elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Free elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td>14 2 15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer science technical elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>PSYCH 301 Industrial Psychology</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Minor course</td>
<td>3 0 3</td>
</tr>
<tr>
<td>IPRO I Interprofessional Project I</td>
<td>1 6 3</td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Free elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td>16 6 18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer science technical elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Computer science technical elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Minor course</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Social science elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Computer science elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Free elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td>18 0 18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IPRO II Interprofessional Project II</td>
<td>1 6 3</td>
</tr>
<tr>
<td>Computer science technical elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Minor course</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Free elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Free elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td>13 6 15</td>
</tr>
</tbody>
</table>

Total Credit Hours 129
Institute of Design
Department Web site: www.id.iit.edu

The Institute of Design no longer offers an undergraduate degree program but encourages students with undergraduate degrees in disciplines other than design to apply to its master’s and Ph.D. programs. For further information, students should call 312.595.4900.

Faculty

Director
Patrick F. Whitney
350 N. LaSalle Street
312.595.4900

Professors
Fahnstrom, Heskett, Whitney

Associate Professors
Grimes, Poggenpohl, Pryrocki, Sato

Assistant Professors
Blevis, Wolke

Senior Lecturers
K. McCoy, M. McCoy

Visiting Faculty
Cain, Conley, Ichikawa, Keeley, Pycha, Sivasankaran, Thaler
The Department of Electrical and Computer Engineering offers the Bachelor of Science in Electrical Engineering (B.S.E.E.). The department also offers a Bachelor of Science in Computer Engineering (B.S.C.P.E.) in conjunction with the Department of Computer Science. Both degree programs are accredited by the Engineering Accreditation Commission of the Accreditation Board of Engineering and Technology (ABET).

The department also offers these minors (see pages 109-111):

- Air Force Aerospace Studies;
- Applied Solid State Physics;
- Energy/Environment/Economics (E³);
- Management;
- Military Science;
- Naval Science;
- Pre-Med for electrical engineering; and
- Telecommunications

The B.S.E.E. curriculum provides a strong foundation in mathematics, physics, chemistry and computer science during the first two years of study. The fundamentals of circuits, electronics, digital and computer systems, electrodynamics, linear systems, and energy conversion are introduced in the second and third years. In the senior year, students further explore their specific areas of interest and gain m-depth exposure to engineering design through the choice of electives. The curriculum is described in detail on page 72.

Some students may wish to combine the full breadth of the B.S.E.E. curriculum with a concentration on computer systems. For these students, the department offers a computer systems specialization of the B.S.E.E. degree. The specialization includes the full B.S.E.E. curriculum and specific courses in computer science and electrical engineering.

The B.S.C.P.E. curriculum concentrates on the design and application of computer hardware and software systems. During the first three years, the curriculum provides students with a strong foundation in mathematics, physics, chemistry and computer science, followed by the fundamentals of electrical engineering and computer science that form the basis of computer engineering. During the senior year, advanced courses provide students with depth in selected areas and exposure to the practice of engineering design. Elective courses provide the flexibility to take specialized courses in a number of different areas. This curriculum is described in detail on page 74.

Students with strong interests in both electrical engineering and computer engineering can elect to earn a dual degree, B.S.E.E./B.S.C.P.E. The curriculum is described in detail on page 76.

The ECE department considers the advising of students as an important obligation. Each semester, each student must meet with his/her faculty adviser during the pre-registration period. Students must closely adhere to course prerequisites to maximize academic performance and satisfy requirements for ABET accreditation. Faculty advisers for all EE and CPE degree students are listed on the department’s bulletin board.

Faculty

Interim Chair
Donald R. Ucci
127 Siegel Hall
Ext. 73405

CPE Program Director
Jafar Saniie
315 Siegel Hall
Ext. 73412

EE Program Director
Terri Tagliavia
308 Siegel Hall
Ext. 75736

Professors
Arzbaecher, LoCicero, Saniie, Shahidehpour, H. Stark
(Carl and Paul Bodine Distinguished Professor), Wong

Adjunct Professor
Briley

Associate Professors
Atkin, Galatsanos, Nestor, Saletta, Troyk, Ucci, Williamson

Assistant Professors
Chan (Motorola Assistant Professor), Emadi, Flueck,
Ramesh, Saraniti, Stine, Wang, Wernick, Yang

Senior Lecturer
Mills

Lecturers
Behera, Tagliavia

Instructor
Axelrod

Faculty Emeriti
Peach, Weber
Electrical engineering is concerned with the generation, transmission and utilization of electrical energy and with the transmitting and processing of information. Electrical engineers are involved in the analysis, design and production of electric power, radio, radar, television, computing, telecommunication, control and information systems. These engineers find solutions to the challenging technical problems that arise in our rapidly changing society. They impact virtually every aspect of day-to-day life, as evidenced by examples such as wireless communications, power distribution, computerized traffic control, noise pollution monitoring and abatement, and medical instrumentation.

Bachelor of Science in Electrical Engineering

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Engineering Requirements</td>
<td>40</td>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>ECE 100, 101, 211, 212, 213, 214, 218</td>
<td></td>
<td>CS 105</td>
<td></td>
</tr>
<tr>
<td>242, 307, 308, 309, 311, 312, 319</td>
<td></td>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>Professional Electives</td>
<td>14</td>
<td>See general education requirements, page 30.</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>24</td>
<td>Engineering Course Requirement</td>
<td>3</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252, 333,</td>
<td></td>
<td>MMAE 320</td>
<td></td>
</tr>
<tr>
<td>and MATH 475 or ECE 475</td>
<td></td>
<td>Science Electives</td>
<td>3</td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>11</td>
<td>BIOL 107, MS 201 or CHEM 126</td>
<td></td>
</tr>
<tr>
<td>PHYS 123, 221, 224</td>
<td></td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry Requirement</td>
<td>4</td>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>CHEM 124</td>
<td></td>
<td>Total Credit Hours</td>
<td>131</td>
</tr>
</tbody>
</table>

Bachelor of Science in Electrical Engineering with specialization in computer systems

The following courses must be completed in addition to required courses for the B.S.E.E. degree.

- CS 106 Introduction to Computer Programming II
- CS 331* Data Structures and Algorithms
- CS 450 Operating Systems
- ECE 441** Microcomputers
- ECE 429 Introduction to VLSI Design OR
- ECE 446** Logic Design and Implementation
- ECE 448** Mini/Micro Computer Programming

* This course serves as a technical elective.
** These courses serve as professional ECE electives.
Electrical Engineering Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Lab. Cr.</th>
<th>Lect. Hrs. Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 151</td>
<td>Calculus I</td>
<td>4 1 5</td>
</tr>
<tr>
<td>CHEM 124</td>
<td>Principles of Chemistry I</td>
<td>3 3 4</td>
</tr>
<tr>
<td>CS 105</td>
<td>Introduction to Computer Programming I</td>
<td>2 1 2</td>
</tr>
<tr>
<td>ECE 100</td>
<td>Introduction to the Profession I</td>
<td>1 2 2</td>
</tr>
<tr>
<td>Social science elective</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>13 7 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 152</td>
<td>Calculus II</td>
<td>4 1 5</td>
</tr>
<tr>
<td>PHYS 123</td>
<td>Mechanics</td>
<td>3 3 4</td>
</tr>
<tr>
<td>Science elective*</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>ECE 101</td>
<td>Introduction to the Profession II</td>
<td>0 4 2</td>
</tr>
<tr>
<td>Humanities 100-level course</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>13 8 17</td>
</tr>
<tr>
<td>Semester 3</td>
<td>Lab. Cr.</td>
<td>Lect. Hrs. Hrs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 252</td>
<td>Introduction to Differential Equations</td>
<td>4 0 4</td>
</tr>
<tr>
<td>PHYS 221</td>
<td>Electromagnetism and Optics</td>
<td>3 3 4</td>
</tr>
<tr>
<td>ECE 211</td>
<td>Circuit Analysis I</td>
<td>3 0 3</td>
</tr>
<tr>
<td>ECE 212</td>
<td>Analog and Digital Laboratory I</td>
<td>0 3 1</td>
</tr>
<tr>
<td>ECE 218</td>
<td>Digital Systems</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Social science elective</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>16 6 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 251</td>
<td>Multivariate and Vector Calculus</td>
<td>4 0 4</td>
</tr>
<tr>
<td>PHYS 224</td>
<td>Thermal and Modern Physics</td>
<td>3 0 3</td>
</tr>
<tr>
<td>ECE 213</td>
<td>Circuit Analysis II</td>
<td>3 0 3</td>
</tr>
<tr>
<td>ECE 214</td>
<td>Analog and Digital Laboratory II</td>
<td>0 3 1</td>
</tr>
<tr>
<td>ECE 242</td>
<td>Digital Computers and Computing</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>13 3 14</td>
</tr>
<tr>
<td>Semester 5</td>
<td>Lab. Cr.</td>
<td>Lect. Hrs. Hrs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 333</td>
<td>Matrix Algebra and Complex Variables</td>
<td>3 0 3</td>
</tr>
<tr>
<td>IPRO I**</td>
<td>Interprofessional Project I</td>
<td>1 6 3</td>
</tr>
<tr>
<td>ECE 307</td>
<td>Electrodynamics</td>
<td>3 3 4</td>
</tr>
<tr>
<td>ECE 311</td>
<td>Engineering Electronics</td>
<td>3 3 4</td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>13 12 17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 308</td>
<td>Signals and Systems</td>
<td>3 0 3</td>
</tr>
<tr>
<td>ECE 309</td>
<td>Traveling Waves</td>
<td>3 0 3</td>
</tr>
<tr>
<td>ECE 312</td>
<td>Electronic Circuits</td>
<td>3 3 4</td>
</tr>
<tr>
<td>ECE 319</td>
<td>Fundamentals of Power Engineering</td>
<td>3 3 4</td>
</tr>
<tr>
<td>Social science elective</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>15 6 17</td>
</tr>
<tr>
<td>Semester 7</td>
<td>Lab. Cr.</td>
<td>Lect. Hrs. Hrs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional ECE elective †</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Professional ECE elective †</td>
<td>3 3 4</td>
<td></td>
</tr>
<tr>
<td>ECE 475</td>
<td>Random Phenomena in Electrical Engineering or MATH 475</td>
<td>Probability</td>
</tr>
<tr>
<td>IPRO II**</td>
<td>Interprofessional Project II</td>
<td>1 6 3</td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>16 9 19</td>
</tr>
<tr>
<td>Semester 8</td>
<td>Lab. Cr.</td>
<td>Lect. Hrs. Hrs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional ECE elective †</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Professional ECE elective †</td>
<td>3 3 4</td>
<td></td>
</tr>
<tr>
<td>Technical elective ††</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>MMAE 320</td>
<td>Thermodynamics</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Humanities or social science elective</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>15 3 16</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>131</td>
<td></td>
</tr>
</tbody>
</table>

This program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).
* Science elective must be BIOL 107, CHEM 126 or MS 201.
** Interprofessional projects may be taken at any time during the sophomore, junior or senior years. (Course scheduling must be adjusted accordingly with adviser approval.)

IPROs are subject to the approval of a student's academic adviser. At least one IPRO should have significant (at least 75 percent) technical content and be viewed as a technical IPRO with the same definition as a technical elective.
† Professional ECE electives may be chosen from any of the 400-level ECE courses identified with (P) in the course descriptions. Courses at the 500-level may be taken with the written consent of the instructor, faculty adviser and the ECE department chair. At least two of the electives must contain laboratories. A maximum of three credits of Undergraduate Research (ECE 491) or Special Problems (ECE 497) may be used as professional ECE electives with adviser approval.
†† Adviser-approved course from engineering, science, mathematics, or computer science that is more advanced than the academic level of the student.
Computer Engineering
Department Web site: www.ece.iit.edu

Computer engineering involves the design and application of computer hardware and computer software. Computer hardware consists of the physical components that implement a computer system: processor and memory chips, circuit boards, and peripheral devices. Computer software consists of computer programs that accomplish a specific task using sequences of simple, programmable steps. Computers have become an integral part of many large systems that require sophisticated control including automobiles, medical instrumentation, telecommunication systems, and factory automation. Computers are a driving force behind many of today's exciting new technologies, including high-definition television (HDTV), interactive multimedia, and high-speed computer networks. Computer engineers must have detailed knowledge of both hardware and software to design, build and use complex information processing systems for a wide range of applications.

Bachelor of Science in Computer Engineering

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Science Requirement</td>
<td>3</td>
</tr>
<tr>
<td>MMAE 200 or MMAE 320</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>See general education requirements, page 30.</td>
<td></td>
</tr>
<tr>
<td>Junior Computer Engineering Elective</td>
<td>3/4</td>
</tr>
<tr>
<td>ECE 307, 308, 309, 312 or 319</td>
<td></td>
</tr>
<tr>
<td>Professional Electives</td>
<td>9/12</td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>129/133</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Engineering Requirements</td>
<td>4</td>
</tr>
<tr>
<td>ECE 100, 101</td>
<td></td>
</tr>
<tr>
<td>CS 105, 106, 330, 331, 350, 351, 450, 470, 487</td>
<td>25</td>
</tr>
<tr>
<td>ECE 211, 212, 213, 214, 218, 311, 441</td>
<td>19</td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td></td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252, 474</td>
<td>21</td>
</tr>
<tr>
<td>Junior mathematics elective (MATH 333 or 471)</td>
<td>3</td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>11</td>
</tr>
<tr>
<td>PHYS 123, 221, 224</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirement</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 124</td>
<td></td>
</tr>
</tbody>
</table>
Computer Engineering Curriculum

Semester 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Lect. Hrs. Hrs.</th>
<th>Lab. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 151 Calculus I</td>
<td>4 1 5</td>
<td></td>
</tr>
<tr>
<td>ECE 100 Introduction to the Profession I</td>
<td>1 2 2</td>
<td></td>
</tr>
<tr>
<td>Humanities 100-level course</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>CHEM 124 Principles of Chemistry I</td>
<td>3 3 4</td>
<td></td>
</tr>
<tr>
<td>CS 105 Introduction to Computer Programming I</td>
<td>2 1 2</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>13 7 16</td>
<td></td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Lect. Hrs. Hrs.</th>
<th>Lab. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 152 Calculus II</td>
<td>4 1 5</td>
<td></td>
</tr>
<tr>
<td>ECE 101 Introduction to the Profession II</td>
<td>0 4 2</td>
<td></td>
</tr>
<tr>
<td>Social science elective</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>PHYS 123 Mechanics</td>
<td>3 3 4</td>
<td></td>
</tr>
<tr>
<td>CS 106 Introduction to Computer Programming II</td>
<td>2 1 2</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>12 9 16</td>
<td></td>
</tr>
</tbody>
</table>

Semester 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Lect. Hrs. Hrs.</th>
<th>Lab. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 252 Introduction to Differential Equations</td>
<td>4 0 4</td>
<td></td>
</tr>
<tr>
<td>PHYS 221 Electromagnetism and Optics</td>
<td>3 3 4</td>
<td></td>
</tr>
<tr>
<td>ECE 211 Circuit Analysis I</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>ECE 212 Analog and Digital Laboratory I</td>
<td>0 3 1</td>
<td></td>
</tr>
<tr>
<td>ECE 218 Digital Systems</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>CS 331 Data Structures and Algorithms2</td>
<td>2 3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>15 8 18</td>
<td></td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Lect. Hrs. Hrs.</th>
<th>Lab. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 251 Multivariate and Vector Calculus</td>
<td>4 0 4</td>
<td></td>
</tr>
<tr>
<td>PHYS 224 Thermal and Modern Physics</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>ECE 213 Circuit Analysis II</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>ECE 214 Analog and Digital Laboratory II</td>
<td>0 3 1</td>
<td></td>
</tr>
<tr>
<td>CS 350 Computer Organization and Assembly Language Programming2</td>
<td>2 3</td>
<td></td>
</tr>
<tr>
<td>CS 330 Discrete Structures</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>15 5 17</td>
<td></td>
</tr>
</tbody>
</table>

Semester 5

<table>
<thead>
<tr>
<th>Course</th>
<th>Lect. Hrs. Hrs.</th>
<th>Lab. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering science elective*</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>ECE 311 Engineering Electronics</td>
<td>3 3 4</td>
<td></td>
</tr>
<tr>
<td>CS 351 Systems Programming</td>
<td>2 2 3</td>
<td></td>
</tr>
<tr>
<td>Junior mathematics elective**</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>14 5 16</td>
<td></td>
</tr>
</tbody>
</table>

Semester 6

<table>
<thead>
<tr>
<th>Course</th>
<th>Lect. Hrs. Hrs.</th>
<th>Lab. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior computer engineering elective***</td>
<td>3 0/3 3/4</td>
<td></td>
</tr>
<tr>
<td>CS 450 Operating Systems I</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>MATH 474 Probability and Statistics†</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>IPRO I Interprofessional Project I††</td>
<td>1 6 3</td>
<td></td>
</tr>
<tr>
<td>Social science elective</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>13 6/9 15/16</td>
<td></td>
</tr>
</tbody>
</table>

Semester 7

<table>
<thead>
<tr>
<th>Course</th>
<th>Lect. Hrs. Hrs.</th>
<th>Lab. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 441 Microcomputers</td>
<td>3 3 4</td>
<td></td>
</tr>
<tr>
<td>CS 470 Computer Architecture I</td>
<td>2 2 3</td>
<td></td>
</tr>
<tr>
<td>CS 487 Software Engineering I</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Professional elective†††</td>
<td>3/4 0/3 3/4</td>
<td></td>
</tr>
<tr>
<td>Social science or humanities elective</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>14/15 5/8 16/17</td>
<td></td>
</tr>
</tbody>
</table>

Semester 8

<table>
<thead>
<tr>
<th>Course</th>
<th>Lect. Hrs. Hrs.</th>
<th>Lab. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional elective†††</td>
<td>3 0/3 3/4</td>
<td></td>
</tr>
<tr>
<td>Hardware-design elective††††</td>
<td>3/4 0/3 3/4</td>
<td></td>
</tr>
<tr>
<td>IPRO II Interprofessional Project II††</td>
<td>1 6 3</td>
<td></td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Social science elective</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>13/14 6/12 15/17</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours

| | 129/133 |

This program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).

* Engineering science elective: Choose either M3MAR 200 or M3MAR 320.

** Junior mathematics elective: Choose either MATH 333 or MATH 471.

*** Junior CPE elective: Choose one of ECE 307, 308, 309, 312, or 319.

† ECE 475 may be substituted with adviser approval.

†† Interprofessional projects may be taken at any time during the sophomore, junior or senior years. (Course scheduling must be adjusted accordingly with adviser approval.)

††† Professional electives may be chosen from the 400-level ECE courses identified with a (P) in the course descriptions except ECE 448, and any 400-level computer science courses except CS 460, 461 and 485. A maximum of three credits of Undergraduate Research (ECE 491 or CS 491) or Special Problems (ECE 497 or CS 495) may be used as a professional elective with adviser approval.

†††† Hardware-design elective must be CS 471, ECE 429 or ECE 446.
Bachelor of Science in Electrical Engineering/
Bachelor of Science in Computer Engineering

The dual degree, B.S.E.E./B.S.CP.E., combines all the essential elements of a broad-based, traditional B.S.E.E. degree with the modern and progressive aspects of a B.S.CP.E. degree. This program is certainly the foundation of the new millennium, where computer hardware and software are used in areas such as telecommunications, power electronics, digital signal processing, computer networks, and control systems. With some advanced placement credit, a student can readily complete the dual-degree program in four years.

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Engineering Requirements</td>
<td></td>
<td>Chemistry Requirement</td>
<td>4</td>
</tr>
<tr>
<td>ECE 100, 101, 211, 212, 213, 214, 218, 242</td>
<td>48</td>
<td>CHEM 124</td>
<td></td>
</tr>
<tr>
<td>307, 308, 309, 311, 312, 319, 429 (or 446,441)</td>
<td></td>
<td>Engineering Science Requirement</td>
<td>3</td>
</tr>
<tr>
<td>Computer Engineering Requirements</td>
<td>22</td>
<td>MMAE 320</td>
<td></td>
</tr>
<tr>
<td>CS 105, 106, 330, 331, 351, 450, 470, 487</td>
<td></td>
<td>Mathematics Requirements</td>
<td>24</td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td></td>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252, 333, 474</td>
<td></td>
<td>See general education requirements, page 30.</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>11</td>
<td>Professional Electives</td>
<td>6/7</td>
</tr>
<tr>
<td>PHYS 123, 221, 224</td>
<td></td>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credit Hours</td>
<td>145/146</td>
</tr>
</tbody>
</table>
B.S.E.E./B.S.C.P.E. Curriculum

Semester 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Lab. Cr.</th>
<th>Lect. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 151 Calculus I</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 124 Principles of Chemistry I</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CS 105 Introduction to Computer Programming I</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ECE 100 Introduction to the Profession I</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Social Science Elective*</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>13</td>
<td>7</td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Lab. Cr.</th>
<th>Lect. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 152 Calculus II</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 123 Mechanics</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CS 106 Introduction to Computer Programming II</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ECE 101 Introduction to the Profession II</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Humanities elective (HUM 102, 104 or 106)</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>9</td>
<td>9</td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Lab. Cr.</th>
<th>Lect. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 252 Introduction to Differential Equations</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 221 Electromagnetism and Optics</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ECE 211 Circuit Analysis I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ECE 212 Analog and Digital Laboratory I</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ECE 218 Digital Systems</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CS 331 Data Structures and Algorithms</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>15</td>
<td>8</td>
<td>18</td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Lab. Cr.</th>
<th>Lect. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 251 Multivariate and Vector Calculus</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 224 Thermal and Modern Physics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ECE 213 Circuit Analysis II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ECE 214 Analog and Digital Laboratory II</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ECE 242 Digital Computers and Computing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CS 330 Discrete Structures</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>16</td>
<td>3</td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 5

<table>
<thead>
<tr>
<th>Course</th>
<th>Lab. Cr.</th>
<th>Lect. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 333 Matrix Algebra and Complex Variables</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ECE 307 Electrodynamics</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ECE 311 Engineering Electronics</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Interprofessional Project</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>CS 351 Systems Programming</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>12</td>
<td>14</td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 6

<table>
<thead>
<tr>
<th>Course</th>
<th>Lab. Cr.</th>
<th>Lect. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 308 Signals & Systems</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ECE 309 Traveling Waves</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ECE 312 Electronic Circuits</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ECE 319 Fundamentals of Power Engineering</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Social science elective*</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>15</td>
<td>6</td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 7

<table>
<thead>
<tr>
<th>Course</th>
<th>Lab. Cr.</th>
<th>Lect. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 441 Microcomputers</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CS 450 Operating Systems</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH 474 Probability & Statistics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Interprofessional Project</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Humanities elective**</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>13</td>
<td>9</td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 8

<table>
<thead>
<tr>
<th>Course</th>
<th>Lab. Cr.</th>
<th>Lect. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 429 Introduction to VLSI Design OR ECE 446 Advanced Logic Design</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ECE 446 Advanced Logic Design</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CS 470 Computer Architecture I</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CS 487 Software Engineering</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MMAE 320 Thermodynamics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Social science elective*</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>14</td>
<td>5</td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 9

<table>
<thead>
<tr>
<th>Course</th>
<th>Lab. Cr.</th>
<th>Lect. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional elective†</td>
<td>3</td>
<td>0/3</td>
<td>3/4</td>
</tr>
<tr>
<td>Professional elective†</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Humanities elective**</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or social science elective††</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>12</td>
<td>0/3</td>
<td>12/13</td>
</tr>
</tbody>
</table>

Total Credit Hours

145/146

* Social science electives: Students should choose among ECON, PS, PSYC or SOC courses. Students must take courses from at least two different fields and at least six of those credits must be from one field and at 300 level or above.

** Humanities electives: Students must choose 300 level or above ENGL, HIST, PHIL, AAH or MHA courses. Any foreign language courses must be 200 level or above.

† ECE 400-level course with (P) designation and approved as CPE elective. A maximum of three credits of either ECE 491 or ECE 497.

†† Any adviser-approved humanities or social science elective with (H) or (S) designations in the course description respectively.
Lewis Department of Humanities
Department Web site: www.iit.edu/departments/humanities

The Lewis Department of Humanities offers Bachelor of Science degrees in internet communication (iCOM) and in professional and technical communication (PTC). These degrees provide students with both a liberal arts education in communication and culture and an applied professional education in a technical communication field. The department offers courses in philosophy, history, literature, foreign languages, English as a second language, linguistics, art and architectural history, communication and writing.

The humanities department also offers academic minors in history, literature, logic and philosophy of science, philosophy, and professional and technical communication. Minors in law and society, technology and human affairs, and urban studies are also offered in conjunction with the Department of Social Sciences.

The department has five undergraduate educational objectives:

1. To offer and support the B.S. degree programs and the academic minors.

2. To provide students the opportunity to pursue personal interests in the humanities. This objective is achieved through offering a wide range of advanced courses in the many disciplines that comprise the humanities. The department also encourages students to take minors in literature, history and philosophy.

3. To strengthen the ability of all IIT students to formulate and to express ideas. In addition to composition courses for both native and non-native English speakers, the department supports the Writing Center, where students receive one-on-one tutoring at their convenience. Undergraduates who qualify may also take advanced courses in technical and business writing. Advanced courses provide further exposure to critical thinking and to the communication of ideas.

4. To support the requirements of all of IIT's professional degree programs. Courses marked with (H) satisfy degree requirements in general education. The department also offers specialized courses (such as architectural history) that meet the educational needs of specific degree programs. The department offers many courses of special relevance to students preparing for careers in the law in IIT's pre-professional degree programs.

5. To enable all IIT students to enrich their professional and personal lives. This goal is achieved through advanced elective courses in the humanities, which provide an appreciation and understanding of human development and the moral foundations of human experience, particularly as reflected in history, literature and philosophy.

IIT students are encouraged to broaden their educational backgrounds and to discover new interests through the study of humanities.

The humanities department considers the advising of students an important obligation. Each semester, all students majoring in iCOM or PTC must meet with their faculty advisers during the pre-registration period. Students must closely adhere to course prerequisites to maximize academic performance and satisfy requirements of the degree programs.

Faculty

Chair
Paul F. Barrett
218 Siegel Hall
Ext. 73465

Associate Chair
John W. Snapper
229 Siegel Hall
Ext. 73008

Professors
Davis, Feinberg, Harrington, Ladenson, Root, Schmaus

Associate Professors
Barrett, Broadhead, Fox-Good, Misa, Snapper

Assistant Professors
Brande, Coogan, Fojas, Power, Quiroz

Senior Lecturers
Dabbert, Pulliam

Faculty Emeriti
Applebaum, Irving, Sawyier, Zesmer

Director of Technical Communication
Glenn Broadhead
200 Siegel Hall, Ext. 73469

Associate Director of Technical Communication
Greg Pulliam
213 Siegel Hall, Ext. 77968
The Bachelor of Science Degrees in iCOM and PTC

Both B.S. degree programs help students develop their writing skills, sensitivity to the social and cultural aspects of communication, fluency with the latest computer technologies, and strategies for information design. Students in both programs will therefore take a number of courses in IIT’s computer classrooms with state-of-the-art hardware and software. The required ethics component focuses on moral issues in communication, business, engineering or computer science. Finally, elective coursework in science, technology and society (STS) gives students awareness of the power of language and image to shape thoughts, values and actions in a variety of public, private and professional contexts.

Bachelor of Science in Internet Communication (iCOM)
Web site: www.iit.edu/~icom

Internet Communication brings together coursework in technical writing, communication, Web design, ethics, science and technology in society, along with a minor in computer networking, to train Internet professionals.

iCOM graduates can become Web designers and webmasters, network administrators, technical writers and editors, and computer journalists.

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Requirements</td>
<td>27</td>
</tr>
<tr>
<td>COM 301 (or 305 or 435), 421 (or 423), 424, 425, 428, 430, 431, 432</td>
<td></td>
</tr>
<tr>
<td>AAH 301 or ARCH 331</td>
<td></td>
</tr>
<tr>
<td>iCOM (Technical) Electives</td>
<td>9</td>
</tr>
<tr>
<td>Ethics Elective</td>
<td>3</td>
</tr>
<tr>
<td>STS Electives</td>
<td>12</td>
</tr>
<tr>
<td>Computer Science Requirements</td>
<td>15</td>
</tr>
<tr>
<td>CS 200, 351, 350, 450, 455</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>(See general education requirements, page 30)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Science/Engineering Requirements</td>
<td>11</td>
</tr>
<tr>
<td>(See general education requirements, page 30)</td>
<td></td>
</tr>
<tr>
<td>Introduction the Profession</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics</td>
<td>5-9</td>
</tr>
<tr>
<td>(MATH 151 or equivalent or MATH 221 and MATH 230)</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Free Electives</td>
<td>15</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>126-130</td>
</tr>
</tbody>
</table>
iCOM Curriculum

Semester 1

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Lab. Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities 100-level course (3 hours)</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Natural science or engineering course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e.g., CHEM 124 Principles of Chemistry I)</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Math 151 Calculus I</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Social science elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>13</td>
<td>4</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Lab. Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural science or engineering course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e.g., CHEM 125 Principles of Chemistry II)</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>AAH 301 Thinking About Art OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 331 Visual Training I</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>COM 301 Introduction to Linguistics OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM 305 American English: History and Dialects OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social science elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>15</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 3

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Lab. Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural science or engineering course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e.g., BIOL 107 General Biology Lectures)</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CS 200 Introduction to C++ Programming</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>iCOM (technical) elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Social science elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>14</td>
<td>2</td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Lab. Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM 421 Technical Writing OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM 423 Writing in the Workplace</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CS 331 Data Structures and Algorithms</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>iCOM (technical) elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>STS elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>17</td>
<td>2</td>
</tr>
</tbody>
</table>

Semester 5

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Lab. Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM 430 Introduction to Web Design and Site Management</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CS 350 Computer Language and Assembly Language Programming</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>STS Elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Interprofessional Project</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Social Science Elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

Semester 6

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Lab. Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 450 Operating Systems</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>COM 431 Intermediate Web Design and Site Management</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>COM 424 Document Design</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Ethics elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Humanities or social science elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>

Semester 7

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Lab. Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM 432 Advanced Web Design and Site Management</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>iCOM (technical) elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>COM 425 Editing</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>STS elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Interprofessional Project</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Totals</td>
<td>13</td>
<td>6</td>
</tr>
</tbody>
</table>

Semester 8

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Lab. Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 485 Computers and Society</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CS 455 Data Communications</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>COM 428 Verbal and Visual Communication</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Ethics elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>STS elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Credit Hours

127
Bachelor of Science in Professional and Technical Communication (PTC)

Department Web site: www.iit.edu/~ptc

The Professional and Technical Communication Program requires much of the same coursework as the iCOM degree, but allows for more flexibility in the choice of a graphics track and an academic minor. PTC graduates might work in desktop publishing, Web design, instructional design, science or engineering journalism, and technical writing and editing for industry and the professions.

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Requirements</td>
<td>27</td>
</tr>
<tr>
<td>COM 301 (or 305 or 435), 421 (or 423),</td>
<td></td>
</tr>
<tr>
<td>424, 425, 428</td>
<td></td>
</tr>
<tr>
<td>AAH 301 or ARCH 331</td>
<td></td>
</tr>
<tr>
<td>One of the following three 9-credit sequences:</td>
<td>9</td>
</tr>
<tr>
<td>WebCom Sequence</td>
<td>9</td>
</tr>
<tr>
<td>COM 430, 431, 432</td>
<td></td>
</tr>
<tr>
<td>Engineering Graphics Sequence</td>
<td>9</td>
</tr>
<tr>
<td>EG 225, 325, 425</td>
<td></td>
</tr>
<tr>
<td>Architectural CAD Sequence</td>
<td>9</td>
</tr>
<tr>
<td>ARCH 125, 425, 426</td>
<td></td>
</tr>
<tr>
<td>PTC (Technical) Electives</td>
<td>9</td>
</tr>
<tr>
<td>Ethics Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS Electives</td>
<td>12</td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>(See general education requirements, page 30)</td>
<td></td>
</tr>
<tr>
<td>Introduction to the Profession</td>
<td>2</td>
</tr>
<tr>
<td>Natural Science/Engineering</td>
<td>11</td>
</tr>
<tr>
<td>(See general education requirements, page xx)</td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td>5-9</td>
</tr>
<tr>
<td>MATH 151 or equivalent or</td>
<td></td>
</tr>
<tr>
<td>MATH 221 and MATH 230</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Academic Minor Requirements</td>
<td>15/18</td>
</tr>
<tr>
<td>Free Electives</td>
<td>15/12</td>
</tr>
</tbody>
</table>

Total Credit Hours 126-130
PTC Curriculum

Semester 1

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Lec. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities 100-level course</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Natural science or engineering course (e.g., CHEM 124 Principles of Chemistry I)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to the Profession</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Math 151 Calculus I</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Social science elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>6</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Lec. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural science or engineering course (e.g., CHEM 125 Principles of Chemistry II)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CS 105 Introduction to Computer Programming I</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>COM 301 Introduction to Linguistics OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM 305 American English: History and Dialects OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM 435 Intercultural Communication</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>4</td>
</tr>
</tbody>
</table>

Semester 3

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Lec. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Science or engineering course (e.g., BIOL 107 General Biology Lectures)</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Ethics elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>AAH 301 Thinking About Art OR</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>ARCH 331 Visual Training I</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>PTC (technical) elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Social science elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Lec. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTC (technical) elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>STS elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Minor coursework</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

Semester 5

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Lec. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM 421 Technical Writing OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM 423 Writing in the Workplace</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>COM 430 Introduction to Web Design and Site Management OR</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EG 225 Engineering Graphics for Non-Engineers OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 125 Introduction to Architectural Computing</td>
<td>3/2/1</td>
<td>0/1/2</td>
</tr>
<tr>
<td>STS elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Interprofessional Project</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Minor coursework</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Social science elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>13-15</td>
<td>0-2</td>
</tr>
</tbody>
</table>

Semester 6

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Lec. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM 424 Document Design</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>COM 431 Intermediate Web Design and Site Management OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG 325 Advanced Engineering Graphics for Non-Engineers OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 425 Computer-Aided Design in Practice</td>
<td>3/2/2</td>
<td>0/1/2</td>
</tr>
<tr>
<td>Humanities or social science elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Minor coursework</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>14-15</td>
<td>0-2</td>
</tr>
</tbody>
</table>

Semester 7

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Lec. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM 432 Advanced Web Design and Site Management OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG 425 Computer Graphics for Non-Engineers OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 426 3-D Modeling in CAD</td>
<td>3/2/3</td>
<td>0/1/0</td>
</tr>
<tr>
<td>COM 425 Editing</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>STS elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Interprofessional Project</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Minor coursework</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>14-15</td>
<td>0-1</td>
</tr>
</tbody>
</table>

Semester 8

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Lec. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTC (technical) elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>COM 428 Verbal and Visual Communication</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>STS elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Minor coursework</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Credit Hours

126-130
Manufacturing Technology and Management
Department Web site: www.mtm.iit.edu

The Bachelor of Manufacturing Technology and Management is a transfer program designed to enable community college A.A.S. graduates who are interested in manufacturing to complete their bachelor's degree while they are working.

Admission to the manufacturing technology program is competitive. It is based on a review of college transcripts, documentation of work experience, and an admission interview. The applicant must hold an A.A.S. degree from an accredited college or the equivalent.

Admission Requirements

Mathematics
Six credit hours of mathematics at the level of college algebra or above.

Computer Science
Three credit hours of computer programming.

Natural Science
Eleven credit hours of science or engineering courses. Relevant courses include physics, chemistry or biology. Up to 6 credit hours may be in graphics/drafting. Coursework should include at least one laboratory science (physics recommended). In some cases, certain technology courses might be applied to this requirement.

Humanities
Six credit hours. Relevant studies include literature, philosophy (except logic) and history.

Social Sciences
Three credit hours. These typically include anthropology, geography, political science, psychology, sociology, and economics.
Manufacturing Technology and Management Curriculum

A total of 66 credits (22 courses and 126 credit hours) are required for the bachelor’s degree for a total of 126 credit hours. This includes four senior-level humanities and social science electives. The 18 required courses focus on all facets of plant operations, including materials, marketing, planning and budgeting, as well as communications, supervisory skills and software applications.

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Lab. Cr.</th>
<th>Lect. Hrs. Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT 301</td>
<td>Communications for the Workplace</td>
<td>3 0 3</td>
</tr>
<tr>
<td>MT 305</td>
<td>Advances in Information Technology</td>
<td>3 0 3</td>
</tr>
<tr>
<td>MT 315</td>
<td>Manufacturing Enterprises</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>9 0 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MT 311</td>
<td>Production and Operations</td>
<td>3 0 3</td>
</tr>
<tr>
<td>MT 313</td>
<td>Materials in Manufacturing</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Humanities elective*</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>9 0 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Lab. Cr.</th>
<th>Lect. Hrs. Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT 321</td>
<td>Computer Integrated Manufacturing</td>
<td>3 0 3</td>
</tr>
<tr>
<td>MT 323</td>
<td>Manufacturing Management and Planning</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Social science elective*</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>9 0 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MT 331</td>
<td>Product Design in Manufacturing</td>
<td>3 0 3</td>
</tr>
<tr>
<td>MT 319</td>
<td>Electronics in Manufacturing</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Social science elective*</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>9 0 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Lab. Cr.</th>
<th>Lect. Hrs. Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT 404</td>
<td>Sales, Marketing, and Product Introduction in Manufacturing</td>
<td>3 0 3</td>
</tr>
<tr>
<td>MT 406</td>
<td>Quality Control in Manufacturing</td>
<td>3 0 3</td>
</tr>
<tr>
<td>IPRO 397</td>
<td>Interprofessional Project</td>
<td>1 6 3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>7 6 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MT 412</td>
<td>Manufacturing Processes</td>
<td>3 0 3</td>
</tr>
<tr>
<td>MT 432</td>
<td>Vendor/Customer Relations</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>6 0 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Lab. Cr.</th>
<th>Lect. Hrs. Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT 424</td>
<td>Management Information Systems in Manufacturing</td>
<td>3 0 3</td>
</tr>
<tr>
<td>MT 426</td>
<td>Decision-Making and Risk Analysis in Manufacturing</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Humanities elective*</td>
<td>3 0 3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>9 0 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8</th>
<th>Lab. Cr.</th>
<th>Lect. Hrs. Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT 422</td>
<td>Manufacturing Technology</td>
<td>3 0 3</td>
</tr>
<tr>
<td>MT 414</td>
<td>Topics in Manufacturing</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>6 0 6</td>
</tr>
</tbody>
</table>

| **Total Credit Hours** | | **66** |

* Six credit hours of 300/400-level social science and six credit hours of 300/400-level humanities electives are required.

Certificate in Manufacturing Technology and Management

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MT 311</td>
<td>Production and Operations</td>
</tr>
<tr>
<td>MT 315</td>
<td>Manufacturing Enterprises</td>
</tr>
<tr>
<td>MT 323</td>
<td>Manufacturing Management and Planning</td>
</tr>
</tbody>
</table>

| **Total Credit Hours** | | **9** |

84
Mechanical, Materials and Aerospace Engineering
Department Web site: www.mmae.iit.edu

The Department of Mechanical, Materials and Aerospace Engineering offers the Bachelor of Science degree in mechanical engineering (B.S.M.E.), metallurgical and materials engineering (B.S.M.M.E.), and aerospace engineering (B.S.A.E.). These degree programs are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).

The objectives of the MMAE undergraduate programs are to educate aerospace, mechanical and metallurgical and materials engineering students for a broad range of professional careers, provide the inspiration for lifelong learning, and prepare students for advanced studies at the graduate level. Recognizing the changing professional environment that MMAE graduates will encounter, our programs aim to develop graduates who:

• Possess a strong foundation in mathematics, science and engineering and who are proficient in the engineering sciences on which the major discipline is based.
• Are able to link science and engineering principles to identify, formulate and solve engineering problems in professional practice and research and development contexts.
• Are able to design and conduct experiments, as well as analyze and interpret data.
• Have experience working in multidisciplinary and interprofessional teams.
• Utilize effective oral, written, graphical and computational communication skills.
• Understand the economic, ethical, societal, environmental and international contexts of their professional activities.
• Pursue lifelong learning.
• Translate knowledge of their respective disciplines to a broad spectrum of professions.

Objectives for the respective degree programs are presented below:

Aerospace Engineering (AE)
The AE program objectives are to develop graduates with an understanding of aircraft and spacecraft design, and applications of those technologies to related areas such as ground and undersea transportation systems, wind power and wind effects on structures, and the use of advanced materials.

Mechanical Engineering (ME)
The ME program objectives are to develop graduates with the ability to perform engineering design and analysis tasks using the principles of solid and fluid mechanics, manufacturing, and thermal, structural and control systems.

Metallurgical and Materials Engineering (MME)
The MME program objectives are to develop graduates who understand the structure, properties, processing, performance, selection and service behavior of engineering materials, including metals, ceramics, polymeric and composite materials. This knowledge applies to design of new materials, improvement of existing materials, and optimization of methods of manufacture.

Faculty

Interim Chair
Sudhakar Nair
243 Engineering 1
Ext. 73175

Professors
Barnett, Dix, M. Dollar, Kallend, Kalpakjian, Meade, Nagib (Rettaliata Distinguished Professor), Nair, Nash, Porter, Todd (Associate Chair, Metallurgical and Materials Engineering Program and Iron and Steel Society Professor), Wark (Associate Chair, Mechanical Engineering Program), Way (Associate Chair, Aerospace Engineering Program), Williams (Director, Fluid Dynamics Research Center)

Associate Professors
Aronov, Mostovoy, Raman, Ruiz

Assistant Professors
Cassel, Clack, Foley (Finkl Assistant Professor), Gosz, Pervan, Tszeng

Research Professors
Broutman, Kumar, Sciammarella

Research Associate Professors
Mansy

Research Assistant Professors
Hites

Lecturer
Cesarone

Adjunct Professors
Copley, Morel, Natarajan, Patwardhan, Routbort, Singh

Visiting Associate Professor
Thakkar

Faculty Emeriti
Bonthron, Breyer, Donnell, Fejer, Gordon, Graham, Higgins, Lavan, Morkovin, Rasof, Rettaliata, Tao, Torda
Students are introduced to the scope of the engineering profession in the first-year courses: Introduction to the Profession I and II, and to the ethical, economical, safety, environmental and other responsibilities of being a professional engineer. Strong emphasis is placed on development of oral and written communication skills. Accompanying courses in mathematics and the basic sciences provide the foundation for later studies of engineering sciences relevant to the students’ major fields of study. These areas include: energy, structures and motion for the ME major; materials, structure-property relations, materials processing, service behavior and design for the MME major; and structures and materials, propulsion and aerodynamics for the AE major. Regardless of the students’ intended major, all MMAE students have a common curriculum for the first two years.

The second year emphasizes building a foundation for the eventual study of engineering design. The engineering sciences offer a rational approach to solving detailed problems encountered in major-specific courses, including the IPROs and capstone design courses of the third and fourth years.

In the third year, students begin the transition to professional practice and learn to develop sound engineering judgment by studying open-ended problems and realistic constraints. Students build further on the engineering sciences, and approximately one-third of major-specific coursework is devoted to the introduction of tangible engineering design. The student’s professional experience is developed by participation in a minimum of two interprofessional projects in the third and fourth years.

The process continues into the fourth year where the three programs culminate in senior-year capstone design courses. Mechanical engineering projects involve design of thermal and mechanical systems; metallurgical and materials engineering students develop new or optimized materials, processing routes and selection schemes; and aerospace engineering students produce conceptual designs of aircraft and spacecraft missions.

Mechanical Engineering

Mechanical engineering is an essential part of most industries and modern technologies, and includes the analysis, design and development of machines and structures that involve motion. Mechanical engineers are employed in areas such as the design and control of machinery; the development of means of transportation including automobiles, aircraft, space and marine vehicles; and railroad; computer-aided design and manufacture of products, consumer goods, devices and industrial equipment; medical technology utilizing mechanical and electromechanical devices; the generation of energy from fossil and nuclear fuels; and the utilization, storage and distribution of alternative energy sources.

Metallurgical and Materials Engineering

The metallurgical and materials engineering program aims to develop an understanding of the structure, properties, processing and service behavior of engineering materials, including metallic, ceramic, polymeric and composite materials. This understanding fosters both development of new materials and improvement of existing materials in order to optimize manufactured products. Laboratory experience is an important part of the program and emphasizes microstructural characterization using modern analytical techniques, such as optical and electron microscopy and x-ray diffraction, materials processing, determination of the physical and mechanical behavior of materials, and materials and process selection. Graduating students find employment opportunities in a wide range of industries requiring knowledge of materials development and/or optimization, processing and selection.

Aerospace Engineering

Aerospace engineering explores both the design and manufacture of aircraft, as well as the design and flight of vehicles beyond the earth’s atmosphere. Knowledge of aerodynamics, structures and materials, propulsion systems, and flight mechanics and controls are important to this field. Aerospace engineers are primarily employed in civil aeronautics, the defense industry and the space program. However, applications of aerospace technology are also found in related areas such as ground and undersea transportation systems, pollution control, wind power and the effects of wind on structures, and the development and use of advanced materials.
Advising

The MMAE department considers the advising of students an important obligation. Each student must meet with a faculty adviser during the pre-registration period each semester. Students must closely adhere to course prerequisites to maximize academic performance and satisfy requirements for ABET accreditation. Faculty advisers for all MMAE students can be obtained from the department coordinator.

Program requirements may not be waived, nor will substitutions be permitted, without the approval of the appropriate associate chair.

Minors

Minors available to students who wish to broaden their knowledge can be found beginning on page 109. In the B.S.M.E. and B.S.A.E. programs, two of the required minor courses substitute for the two technical electives. In the B.S.M.M.E. program, these are substituted for the two MME electives. Minors other than those listed below may be undertaken with the approval of the student's faculty adviser and the MMAE Undergraduate Studies Committee. In the event that a required course for a minor is also required for the major, an approved substitution must be made. Application to take a minor is typically made in the student's third or fourth semester. Minors require completion of additional courses.

Among the minors that are available to ME, MME and AE students are:

- Aerospace Engineering (for ME students only).
- Air Force Aerospace Studies.
- Applied Solid State Physics (for MME students only).
- Artificial Intelligence.
- Construction Management.
- Electromechanical Design and Manufacturing (for ME and AE students only).
- Energy/Environment/Economics (E³).
- Environmental Engineering.
- Fire Protection and Safety Engineering.
- Management.
- Materials Engineering (for ME or AE students only).
- Mechanical Engineering (for AE students only).
- Military Science.
- Naval Science.
- Polymer Science and Engineering.
- Premedical Studies.
- Software Engineering.
Bachelor of Science in Mechanical Engineering, Bachelor of Science in Metallurgical and Materials Engineering, and Bachelor of Science in Aerospace Engineering

Required Courses for the first two years

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics Requirements</td>
<td>18</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>11</td>
</tr>
<tr>
<td>PHYS 123, 221, 224</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirement</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 124</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
</tr>
<tr>
<td>Engineering Graphics Requirement</td>
<td>2</td>
</tr>
<tr>
<td>EG 105</td>
<td></td>
</tr>
<tr>
<td>Material Sciences Requirement</td>
<td>3</td>
</tr>
<tr>
<td>MS 201</td>
<td></td>
</tr>
<tr>
<td>Mechanical, Materials and Aerospace Engineering Requirements</td>
<td>15</td>
</tr>
<tr>
<td>MMAE 100, 101, 201, 202, 271</td>
<td></td>
</tr>
</tbody>
</table>

Humanities/Social Science Electives

<table>
<thead>
<tr>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

Additional Courses Required for the B.S.M.E. Degree in the third and fourth years

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metallurgical and Materials Engineering Requirements</td>
<td>36</td>
</tr>
<tr>
<td>MMAE 361, 362 (or PHYS 348), 363, 370, 464, 465, 467, 468, 474, 476, 482, 485</td>
<td></td>
</tr>
<tr>
<td>Physics Requirement</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 300</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering Requirements</td>
<td>39</td>
</tr>
<tr>
<td>MMAE 304, 305, 310, 311, 312, 320, 322, 350, 430, 431, 432 or 433, 443, 485</td>
<td></td>
</tr>
<tr>
<td>Technical Electives</td>
<td>6</td>
</tr>
<tr>
<td>Humanities/Social Science Electives</td>
<td>9</td>
</tr>
</tbody>
</table>

Total Credit Hours, B.S.M.E.

<table>
<thead>
<tr>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
</tr>
</tbody>
</table>

Additional Courses Required for the B.S.M.M.E. Degree in the third and fourth years

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metallurgical and Materials Engineering Electives or approved Technical electives</td>
<td>6</td>
</tr>
<tr>
<td>Humanities/Social Science electives</td>
<td>9</td>
</tr>
</tbody>
</table>

Total Credit Hours, B.S.M.M.E.

<table>
<thead>
<tr>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>127</td>
</tr>
</tbody>
</table>

Additional Courses Required for the B.S.A.E. Degree in the third and fourth years

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical and Aerospace Engineering Requirements</td>
<td>39</td>
</tr>
<tr>
<td>MMAE 304, 305, 310, 311, 312, 320, 322, 350, 430, 436, 441, 452</td>
<td></td>
</tr>
<tr>
<td>Physics Requirement</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 300</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>6</td>
</tr>
<tr>
<td>Humanities/Social Science Electives</td>
<td>9</td>
</tr>
</tbody>
</table>

Total Credit Hours, B.S.A.E.

<table>
<thead>
<tr>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
</tr>
</tbody>
</table>
B.S.M.E., B.S.M.M.E. and B.S.A.E. Curricula

Curricula for B.S.M.E., B.S.M.M.E. and B.S.A.E. are the same in the first two years.

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Lab. Cr.</th>
<th>Semester 2</th>
<th>Lab. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMAE 100 Introduction to the Profession I</td>
<td>1 4 3</td>
<td>MMAE 101 Introduction to the Profession II</td>
<td>1 4 3</td>
</tr>
<tr>
<td>EG 105 Engineering Graphics and Design</td>
<td>1 2 2</td>
<td>CS 105 Introduction to Computing</td>
<td>2 1 2</td>
</tr>
<tr>
<td>CHEM 124 Principles of Chemistry</td>
<td>3 3 4</td>
<td>PHYS 123 Mechanics</td>
<td>3 3 4</td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>4 2 5</td>
<td>MATH 152 Calculus II</td>
<td>4 2 5</td>
</tr>
<tr>
<td>Humanities or social science elective</td>
<td>3 0 3</td>
<td>Humanities or social science elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td>12 11 17</td>
<td>Totals</td>
<td>13 10 17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Lab. Cr.</th>
<th>Semester 4</th>
<th>Lab. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMAE 201 Mechanics of Solids I</td>
<td>3 0 3</td>
<td>MMAE 202 Mechanics of Solids II</td>
<td>3 0 3</td>
</tr>
<tr>
<td>MS 201 Materials Science</td>
<td>3 0 3</td>
<td>PHYS 224 Thermal and Modern Physics</td>
<td>3 0 3</td>
</tr>
<tr>
<td>PHYS 221 Electricity and Magnetism</td>
<td>3 3 4</td>
<td>MATH 252 Introduction to Differential Equations</td>
<td>4 0 4</td>
</tr>
<tr>
<td>MATH 251 Multivariate and Vector Calculus</td>
<td>4 0 4</td>
<td>MMAE 271 Engineering Materials and Design</td>
<td>2 3 3</td>
</tr>
<tr>
<td>Humanities or social science elective</td>
<td>3 0 3</td>
<td>Humanities or social science elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td>16 3 17</td>
<td>Totals</td>
<td>15 3 16</td>
</tr>
</tbody>
</table>

Mechanical Engineering: Third and Fourth Years

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Lab. Cr.</th>
<th>Semester 6</th>
<th>Lab. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 300 Instrumentation Laboratory</td>
<td>2 3 3</td>
<td>MMAE 303 Mechanics of Solids III</td>
<td>3 0 3</td>
</tr>
<tr>
<td>MMAE 305 Dynamics</td>
<td>3 0 3</td>
<td>MMAE 321 Applied Thermodynamics</td>
<td>3 0 3</td>
</tr>
<tr>
<td>MMAE 310 Fluid Mechanics</td>
<td>3 3 4</td>
<td>MMAE 322 Heat and Mass Transfer</td>
<td>3 3 4</td>
</tr>
<tr>
<td>MMAE 320 Thermodynamics</td>
<td>3 0 3</td>
<td>IPRO I Interprofessional Project I</td>
<td>1 6 3</td>
</tr>
<tr>
<td>MMAE 350 Computational Mechanics</td>
<td>3 0 3</td>
<td>Humanities or social science elective</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td>14 6 16</td>
<td>Totals</td>
<td>13 9 16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Lab. Cr.</th>
<th>Semester 8</th>
<th>Lab. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMAE 430 Engineering Measurements</td>
<td>2 6 4</td>
<td>MMAE 432 Design of Mechanical Systems</td>
<td>1 6 3</td>
</tr>
<tr>
<td>MMAE 431 Design of Machine Elements</td>
<td>2 3 3</td>
<td>MMAE 433 Design of Thermal Systems</td>
<td>2 3 3</td>
</tr>
<tr>
<td>MMAE 485 Manufacturing Processes</td>
<td>3 0 3</td>
<td>MMAE 443 System Analysis and Control</td>
<td>3 0 3</td>
</tr>
<tr>
<td>IPRO II Interprofessional Project II</td>
<td>1 6 3</td>
<td>Technical elective*</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Humanities or social science elective</td>
<td>3 0 3</td>
<td>Technical elective*</td>
<td>3 0 3</td>
</tr>
<tr>
<td>Totals</td>
<td>11 15 16</td>
<td>Totals</td>
<td>13/14 6/3 15</td>
</tr>
</tbody>
</table>

Total Credit Hours 130

* A technical elective is a 300- or higher level course in any engineering discipline (other than required MMAE courses or their equivalent) or in mathematics, physics or computer science. However, not all such courses are acceptable as technical electives. See your faculty adviser for a determination of which courses are acceptable. In addition, ECE 218 and ECON 423 are permitted. Any deviations require written approval by the associate chair of the student’s major.
Metallurgical and Materials Engineering: Third and Fourth Years

Semester 5
- PHYS 300 Instrumentation Laboratory: 2 3 3
- MMAE 362 Physics of Solids: 3 0 3
- MMAE 363 Metallurgical and Materials Thermodynamics: 3 0 3
- MMAE 370 Materials Laboratory I: 1 6 3
- Humanities or social science elective: 3 0 3
- **Totals:** 12 9 15

Semester 6
- MMAE 361 Fundamentals of Crystalline Solids: 3 0 3
- MMAE 465 Electrical, Magnetic and Optical Properties of Materials: 3 0 3
- IPRO I Interprofessional Project I: 1 6 3
- Humanities or social science elective: 3 0 3
- **Totals:** 13 6 15

Semester 7
- MMAE 464 Physical Metallurgy: 3 0 3
- MMAE 468 Introduction to Ceramic Materials: 3 0 3
- MMAE 482 Composites: 3 0 3
- MMAE 485 Manufacturing Processes: 3 0 3
- Humanities or social science elective: 3 0 3
- **Totals:** 15 0 15

Semester 8
- MMAE 474 Metals Processing: 2 3 3
- MMAE 476 Materials Laboratory II: 2 3 3
- MMAE 467 Fundamental Principles of Polymer Materials: 3 0 3
- IPRO II Interprofessional Project II: 1 6 3
- **Totals:** 11 12 15

Total Credit Hours: 127

Aerospace Engineering: Third and Fourth Years

Semester 5
- MMAE 305 Dynamics: 3 0 3
- MMAE 310 Fluid Mechanics: 3 3 4
- MMAE 320 Thermodynamics: 3 0 3
- MMAE 350 Computational Mechanics: 3 0 3
- Humanities or social science elective: 3 0 3
- **Totals:** 15 3 16

Semester 6
- PHYS 300 Instrumentation Laboratory: 2 3 3
- MMAE 304 Mechanics of Aerostructures: 3 0 3
- MMAE 311 Compressible Flow: 3 0 3
- MMAE 312 Aerodynamics of Aerospace Vehicles: 3 0 3
- IPRO I Interprofessional Project I: 1 6 3
- **Totals:** 12 9 15

Semester 7
- MMAE 322 Heat and Mass Transfer: 3 3 4
- MMAE 441 Aerospace Dynamics: 3 0 3
- MMAE 452 Aerospace Propulsion: 3 0 3
- IPRO II Interprofessional Project II: 1 6 3
- Humanities or social science elective: 3 0 3
- **Totals:** 13 9 16

Semester 8
- MMAE 430 Engineering Measurements: 2 6 4
- MMAE 436 Design of Aerospace Vehicles: 2 3 3
- Technical elective*: 3 0 3
- Technical elective*: 3 0 3
- Humanities or social science elective: 3 0 3
- **Totals:** 13 9 16

Total Credit Hours: 130

* See footnote, page 84.

Graduate Courses

Graduate courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty adviser. See the current *IIT Bulletin: Graduate Programs* for course descriptions.
Institute of Psychology
Department Web site: www.iit.edu/colleges/psych

Psychology has as its objective understanding the manner in which organizations, human beings and animals behave, learn and interact and the ways in which their behavior can be modified.

The Institute of Psychology offers two distinct psychology programs, as well as options for honors pre-med and law. One program is a traditional Bachelor of Science in Psychology. The other is a unique research-based, human-behavior-oriented B.S. program, blending the strengths of highly successful graduate programs in clinical, industrial/organizational, and rehabilitation psychology. The program incorporates recommendations of the American Psychological Association for undergraduate education in the four basic areas of social, individual differences, physiology and learning and cognition, as well as Illinois Institute of Technology's focus on interdisciplinary, project-based learning. Designed for highly motivated, career-oriented students, this new program emphasizes the integration of applied research with faculty and practical experience in professional settings in conjunction with traditional classroom activities. The four-year learning experience is highlighted and supported by a faculty mentorship model, individual advising, and both individual and group activities with faculty, graduate and other undergraduate students. On the following pages are a list of required courses and a sample program of study.

Most psychologists hold advanced degrees, and this innovative program will provide students with excellent preparation for graduate school. Jobs in many fields are open to persons holding only a bachelor's degree in psychology, including new burgeoning areas of geriatrics, health and sports counseling, behavioral medicine, and managed health care, as well as traditional settings such as schools, courts, hospitals, industries and research laboratories. Many students also will find psychology highly beneficial as a pre-professional major for advanced studies in medicine, dentistry, law, business or public administration.

In summary, the institute's curriculum encompasses the major changes that have occurred in psychology over the past 25 years and prepares students for the twenty-first century, whether it be in psychology or another professional field.

Faculty

Director
M. Ellen Mitchell
252 Life Sciences
Ext. 73500

Psychology for the Professions
Michael Young
Associate Professor of Psychology
246B Life Sciences
Ext. 73503

Professors
Geist, Huyck, Lam, Raju, Schleser, Wolach

Associate Professors
Ayman, Hopkins, Merbitz, Mitchell, Sher, Young

Assistant Professors
Hilburger, Morris, Paquin, Roth, Rokicki
Bachelor of Science in Psychology, Applied Sciences Program

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychology Requirements</td>
<td>33</td>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>PSYC 204, 221, 222, 301, 303, 406, 435 or 436, 482, 483, 487, 488</td>
<td></td>
<td>Natural Sciences Requirements</td>
<td>12-13</td>
</tr>
<tr>
<td>Introduction to the Profession 100 (2 semesters)</td>
<td>4</td>
<td>CHEM 124, BIOL 107 and/or 115*, PHYS 211</td>
<td></td>
</tr>
<tr>
<td>Psychology Electives</td>
<td>15</td>
<td>Humanities and Social Sciences Requirements</td>
<td>24</td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>6</td>
<td>See general education requirements, page 30. (21 hrs)</td>
<td></td>
</tr>
<tr>
<td>MATH 122, 221</td>
<td></td>
<td>Social science electives (3 hrs)</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
<td>Fourth-year capstone project</td>
<td>3</td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Free electives</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credit Hours</td>
<td>126-127</td>
</tr>
</tbody>
</table>

* In the absence of a lab to accompany BIOL 107 or 115, both courses must be completed.

A sample curriculum follows. Interested students should contact the institute directly to consult with a faculty adviser about the curriculum and its tailor-made opportunities.
Applied Sciences, Psychology Specialization Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Lect. Hrs.</th>
<th>Lab. Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 100 Introduction to the Profession I</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Humanities 100-level elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 124 Principles of Chemistry I</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>PSYC 221 Human Behavior, Growth and Learning</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH 122 Introduction to Mathematics II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>14</td>
<td>3</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 101 Introduction to the Profession II</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>BIOL 115 Human Biology</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PS 200 American Government</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 222 Brain, Mind and Behavior</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or social sciences elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>14</td>
<td>0</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 303 Abnormal Psychology</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 482 Undergraduate Research Seminar I</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 301 Industrial Psychology</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 107 General Biology Lectures</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH 221 Basic Probability and Statistics Interprofessional project</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>14</td>
<td>3</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Free elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Psychology elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 483 Undergraduate Research Seminar II</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CS 105 Introduction to Computer Programming I</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 211 Basic Physics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or social sciences elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>15</td>
<td>3</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 435 Early Development OR</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 436 Adult Development</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 204 Experimental Psychology and Research Methods</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Free elective*</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Free elective*</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or social sciences elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>15</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychology electives</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Humanities or social sciences elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or social sciences elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Free electives*</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Totals</td>
<td>18</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Lect. Hrs.</th>
<th>Lab. Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interprofessional Project</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 487 Integrative Psychology Seminar I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 406 History and Systems of Psychology</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Psychology elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Free elective*</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>13</td>
<td>6</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8</th>
<th>Lect. Hrs.</th>
<th>Lab. Cr.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychology Honors Project</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 488 Integrative Psychology Seminar II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Psychology elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or social sciences elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Free elective*</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>15</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours: 127

* Students may select a minor sequence in place of free electives.
Bachelor of Science in Psychology (Traditional)

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychology Requirements</td>
<td>30</td>
</tr>
<tr>
<td>PSYC 204, 221, 222, 303, 310,</td>
<td></td>
</tr>
<tr>
<td>406, 423, 435 or 436, 452, 487</td>
<td></td>
</tr>
<tr>
<td>Psychology Electives</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>13</td>
</tr>
<tr>
<td>MATH 151, 152, 221</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>6</td>
</tr>
<tr>
<td>PHYS 211, 212</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirements</td>
<td>7</td>
</tr>
<tr>
<td>CHEM 124, 126</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirements</td>
<td>8</td>
</tr>
<tr>
<td>CS 105, 290, 460</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology Requirements</td>
<td>6</td>
</tr>
<tr>
<td>BIOL 107, 115</td>
<td></td>
</tr>
<tr>
<td>Introduction to the Profession</td>
<td>4</td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>See general education requirements, page 30.</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td>Individualized minor courses</td>
<td>15</td>
</tr>
<tr>
<td>Free electives</td>
<td>6</td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>128</td>
</tr>
</tbody>
</table>
Psychology (Traditional) Curriculum

Semester 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 100 Introduction to the Profession I</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC 221 Human Behavior, Growth and Learning</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities 100-level elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 151* Calculus I</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities or social science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>13</td>
<td>4</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 101 Introduction to the Profession II</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC 222 Brain, Mind and Behavior</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC 303 Abnormal Psychology</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 152* Calculus II</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities or social science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 105 Introduction to Computer Programming I</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>16</td>
<td>5</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semester 3

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 310 Social Psychology</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 107 General Biology Lectures</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 200 Intro to C++ Programming</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>14</td>
<td>2</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 204 Experimental Psychology</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Research Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 211 Basic Physics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 115 Human Biology</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interprofessional Project</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individualized minor**</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>13</td>
<td>6</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semester 5

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 212 Basic Physics II</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 221 Basic Probability and Statistics</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 124 Principles of Chemistry I</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 460 Fundamentals of Multimedia</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individualized minor**</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>14</td>
<td>5</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semester 6

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 435 Early Development or PSYC 436</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 126 Principles of Chemistry II</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities or social science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individualized minor**</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interprofessional Project</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>16</td>
<td>6</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semester 7

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 452 Personality Theory</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC 406 History and Systems of Psychology</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities or social science elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individualized minor**</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychology elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semester 8

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 487 Integrative Psychology Seminar I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC 423 Learning Theory</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individualized minor**</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free electives</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 128

* Depending on their level of preparation, students may be placed in another mathematics sequence.

** Students must plan a specialized minor in consultation with their departmental adviser. The minor will be designed to complement their professional studies.
Institute of Psychology

Optional Programs

Combined-Degree Programs

A specialization in psychology may be used as the basis for the combined undergraduate-graduate professional degree programs in law (B.S./J.D.), business (B.S./M.B.A.), public administration (B.S./M.P.A.) or rehabilitation counseling (B.S./M.S.) offered by IIT. Students wishing to participate in the accelerated B.S./J.D. option must indicate this as early as possible. With the consent of the Institute of Psychology director, undergraduate psychology students may enroll in some graduate-level psychology courses.

For undergraduate psychology majors, it is possible to earn a Master of Science in Rehabilitation Counseling in one-and-a-half years instead of the normal two years. By taking psychology courses that apply to the rehabilitation-counseling program, graduate program coursework can be reduced by up to 15 credit hours, or one full-time semester. The following courses can be taken as part of required or elective courses for the B.S. in Psychology. If taken as an undergraduate, these courses do not have to be repeated for the graduate rehabilitation-counseling program.

- PSYC 410 Vocational Rehabilitation
- PSYC 411 Medical Aspects of Disabling Conditions
- PSYC 412 Psychosocial Aspects of Disabling Conditions
- PSYC 513 Vocational Assessment and Evaluation
- PSYC 523 Introduction to Theories of Psychotherapy
- PSYC 557 Pre-Practicum in Rehabilitation Counseling
- PSYC 562 Job Placement
- PSYC 563 Vocational Counseling
- PSYC 583 Rehabilitation Engineering Technology I
- PSYC 590 Introduction to Psychiatric Rehabilitation

Taking any five of these courses while an undergraduate will allow completion of the graduate program in only 45 credit hours. Interested undergraduates should consult with a faculty member of the rehabilitation counseling program, in addition to their undergraduate academic adviser, to best plan a program leading to the combined degrees in the shortest possible time.
ROTC: Air Force Aerospace Studies
Department Web site: www.iit.edu/departments/airforce/

Air Force ROTC is conducted at approximately 600 colleges and universities throughout the United States to select and train men and women to become commissioned officers in the U.S. Air Force. Most graduates who enter the Air Force through Air Force ROTC are assigned to positions consistent with their academic major. Other graduates, who wish to do so, may qualify to become pilots and navigators. Men and women who complete graduation requirements and the Professional Officer Course receive commissions and enter active duty as second lieutenants. Officers who qualify may take graduate training prior to beginning their military duties.

Faculty

Chair
Lt. Col. Mark Snyder
208 Stuart Building
Ext. 73525

Professor
Snyder

Assistant Professors
Karagias, Moehlmann, Musselman
Financial Aid

Scholarships are available to qualified graduate and undergraduate students in both the four-year and two-year programs. These scholarships pay up to full tuition and fees, textbook allowance, and a monthly subsistence allowance. All members receive a subsistence allowance of $250 per month in their final two academic years.

Courses

The General Military Course (AS 101, 102, 201, 202) examines the role of U.S. Military forces in the contemporary world, with particular attention to the United States Air Force and its organization and mission.

The Professional Officer Course (AS 301, 302, 401, 402) provides an examination of the broad range of U.S. civil-military relations, the environmental context in which U.S. defense policy is formulated and implemented, and the principles and practices of leadership and total quality management as they relate to the U.S. Air Force.

A student may take any of these courses without entering the AFROTC program.

Four-Year Program

The Air Force ROTC offers both the four-year and two-year commissioning programs for male and female IIT students. The four-year program consists of the four-semester General Military Course (GMC) and the four-semester Professional Officer Course (POC). Students normally start this program as freshmen but may begin as sophomores by enrolling in both the freshman- and sophomore-year classes. Students not on scholarship may withdraw from the GMC at any time. Participants in the POC are selected from qualified volunteer applicants. An Air Force ROTC-paid, four-week field training encampment, held at an Air Force base, is required for POC students. This requirement is normally completed during the summer between the sophomore and junior years. The major areas of study during field training include junior officer training, aircraft and air-crew orientation, career orientation, survival training, base functions, and the Air Force environment.

Two-Year Program

The two-year program consists of a paid five-week summer field training encampment and the four-semester Professional Officer Course. Participants in this program are selected from qualified volunteer applicants. This program is designed for undergraduate and graduate students with less than three, but at least two, years remaining at IIT. The five-week field training is held at an Air Force base and is a prerequisite for the POC. The major areas of study at field training are the same as in the four-year program with the addition of the GMC academic curriculum. Upon successful completion of the five-week program, which includes the GMC academic curriculum, transfer credit of three semester hours will be applied toward the completion of the AFROTC minor. Students should contact the Department of Air Force aerospace studies during the fall term of their sophomore years, if interested in this option.

Minor

Students may select a minor in Air Force aerospace studies. See page 99 for course requirements.
ROTC Air Force Aerospace Studies Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Lab.</th>
<th>Cr.</th>
<th>Semester 2</th>
<th>Lab.</th>
<th>Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 101</td>
<td>1</td>
<td>2</td>
<td>AS 102</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS 201</td>
<td>1</td>
<td>2</td>
<td>AS 202</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS 301</td>
<td>3</td>
<td>2</td>
<td>AS 302</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS 401</td>
<td>3</td>
<td>2</td>
<td>AS 402</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Totals | 16 | 16 | 16 | 16 | 16 |

GMC courses AS 101, 102, 201 and 202 academic curricula are included in the two-year program’s five-week field training.
The principal objective of the college-level Reserve Officer’s Training Corps (ROTC) program is to develop commissioned officers for the Active Army, the Army National Guard, and U.S. Army Reserve. Each course is designed to develop essential qualities and traits of leadership required for success in either a civilian or a military career.

Instruction is offered through either a four-year or two-year program. The four-year program consists of the Basic Course (freshman and sophomore years) and the Advanced Course (junior and senior years). The two-year Advanced Course is open to students eligible for advanced placement through a variety of options. Both programs include attendance at Camp Adventure (a six-week advanced summer camp) just prior to commissioning.

Faculty

Chair

LTC Walter E. Wentz
University of Illinois at Chicago
312.996.3451

IIT Program Director

SFC David Jurkovic
404 FA
Ext. 87140

Professor

Wentz

Assistant Professors

Lane, Jack, Brown, Wilklow

Instructors

Jurkovic, Browning, Brust, Cleland
Basic Course

The Basic Course is an introduction to military science and carries no military obligation. Completion is a prerequisite to enrollment in the Advanced Course. Prior service, completion of basic combat training through the National Guard or Reserve, or completion of Camp Challenge may be substituted for the Basic Course.

Advanced Course

All cadets who successfully complete the Basic Course, meet the physical and academic requirements, and pass an officer-qualification test and a physical examination are eligible for selection by the professor of military science for the Advanced Course. A tax-free subsistence allowance of $150 per month is paid to each cadet in the Advanced Course except during attendance at summer camp, when pay is approximately $100 per week. Upon graduation and successful completion of the Advanced Course and the Professional Military Education Requirements (PMEs), cadets are commissioned as second lieutenants in the Active Army, the Army Reserve or the National Guard.

Summer Camp

Cadets are paid approximately $700 during both Camp Challenge (the Basic Camp) and Camp Adventure (the Advanced Camp). Travel to and from camp is at government expense. Meals, housing, medical care, uniforms and equipment are furnished.

Professional Military Education Requirements (PMEs)

In order to receive a well-rounded education, cadets are required to complete courses in the following areas: advanced written communications, human behavior, military history, computer literacy, and math reasoning.

Simultaneous Membership Program (SMP)

Membership in the Army National Guard or United States Army Reserve offers cadets additional experience as officer trainees, and these individuals will receive both the ROTC subsistence allowance and drill pay. They may also receive additional money while attending school.

Financial Assistance

In addition to a monthly subsistence of $150, the program offers two-, three- and four-year federal Army ROTC scholarships up to $16,000 per year to qualified students. IIT offers an excellent incentive package to scholarship winners. For further information, students should call 312.413.2357 or visit the Department of Military Science.
ROTC: Military Science Curriculum

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILS 101</td>
<td>U.S. Defense Establishment</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>MILS 147*</td>
<td>Aerobic Conditioning</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Semester 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILS 201</td>
<td>Fundamentals of Leadership, Organization and Planning</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MILS 247*</td>
<td>Aerobic Conditioning</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Semester 5

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILS 301</td>
<td>Military Operations and Tactics</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>MILS 347**</td>
<td>Aerobic Conditioning</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Semester 7

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILS 401</td>
<td>Training and Resource Management</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>MILS 447**</td>
<td>Aerobic Conditioning</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILS 102</td>
<td>Customs and Traditions of the Military</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>MILS 148*</td>
<td>Aerobic Conditioning</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILS 202</td>
<td>Leadership Dynamics</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MILS 248*</td>
<td>Aerobic Conditioning</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Semester 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILS 302</td>
<td>Organizational Leaders</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>MILS 348**</td>
<td>Aerobic Conditioning</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Semester 8

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect. Hrs.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILS 402</td>
<td>Military Law</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>MILS 448**</td>
<td>Aerobic Conditioning</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

* MILS 147, 148, 247 and 248 (Aerobic Conditioning) are required for all scholarship cadets in the Basic Program.

** MILS 347, 348, 447 and 448 (Aerobic Conditioning) are required for all Advanced Course cadets.
ROTC: Naval Science
Department Web site: www.iit.edu/~nrotc/

The Naval Reserve Officers Training Corps (NROTC) offers an opportunity for young men and women to qualify for a commission in the U.S. Navy or U.S. Marine Corps while attending college. While pursuing their academic studies, midshipmen of the NROTC unit receive a professional education and the necessary specialized training to qualify them to become commissioned Navy or Marine Corps officers.

As commissioned officers in the United States Navy, graduates may serve in one of the various components of the U.S. Fleet, such as surface ships, the aviation community, or nuclear-powered submarines. Of particular interest is the opportunity to serve as an operating engineer aboard a nuclear or conventionally powered ship. The theoretical knowledge obtained at IIT is combined with practical knowledge and early responsibility in the operation and management of the latest in missile, aircraft, and high-performance ship propulsion systems.

Students may request the option to become officers in the U.S. Marine Corps. A commission in the Marine Corps may lead to a specialization in aviation, infantry, engineering, armor, communications or supply.

Faculty

Chair
CAPT. Jeffrey Keho
217 Stuart Bldg.
Ext. 73527

Professor
Keho

Associate Professor
Hall

Assistant Professors
Aranda, Orlich, Spackman
ROTC: Naval Science Undergraduate Study

The objective of the program in naval science is to supplement the student’s academic study with specialized education in naval subjects and practical training and experience so that, upon commissioning, the future officer can become a productive member of the naval community. Active duty naval officers are assigned as instructors in the NROTC unit. It is their responsibility to assist the students in translating the theoretical knowledge they receive into the practical skills and knowledge they will require after commissioning and to provide both professional and personal counseling.

Classroom experience is principally directed toward providing education in those technical areas that are peculiar to the naval environment, such as navigation. Knowledge of customs and traditions of the service is provided through seminars and contact with Navy personnel. During the summer, students are assigned to naval ships and stations where their education as future naval officers is enhanced by on-the-job training. Scholarship NROTC students receive about four weeks of summer training each year; College Program students attend training during the summer preceding their last academic year. Between their third and fourth years, Marine Corps NROTC students will attend a summer training program at the Marine Corps Development and Education Command in Quantico, VA.

Scholarship Program

NROTC scholarship students are selected by nationwide competition. The NROTC Scholarship pays for tuition, books and fees, as well as provides a tax-free stipend each month for four years. Graduates are commissioned as naval officers and incur an obligation of four years of active duty.

College Program

Admission to the College Program is controlled by the professor of naval science. In addition to uniforms and some naval science books issued to students enrolled in this program, the Navy provides a tax-free stipend each month during the junior and senior years. Graduates are commissioned as Reserve naval officers and incur an obligation of three years of active duty.

Two-Year Programs

The Navy/Marine Corps offer two two-year programs; one of these is a Scholarship Program and the other is a two-year College Program. Students are selected before April 1 of their sophomore year and attend a six-week Naval Science Institute in the summer before entering their junior year. Scholarship benefits for the junior and senior year are identical to those received by students in the four-year scholarship program during their junior and senior years.

Academic Requirements

Scholarship Program students are encouraged to pursue majors in engineering and applied sciences to meet the technological demands of the modern Navy. Most other fields of study leading to a baccalaureate degree are permitted with the approval of the Professor of Naval Science. All Navy option scholarship program students are required to complete one year each of calculus and physics.

College Program students and students enrolled in the Marine Corps option are encouraged to take courses in calculus and physics or to pursue a science or engineering major. In addition to the prescribed naval professional academic courses, the naval faculty conducts laboratories all four academic years to give students experience in practical leadership.

All scholarship students are required to complete a course in American Military Affairs or National Security Policy. Naval science courses are not offered on a pass-fail basis.

Optional Program

Students may select a minor in naval science. Course requirements are shown on page 105.
ROTC: Naval Science Curriculum

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NS 101</td>
<td>Introduction to Naval Science</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>NS 202</td>
<td>Seapower and Maritime Affairs</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>NS 102</td>
<td>Naval Ships Systems</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>NS 401</td>
<td>Leadership and Management</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>NS 301</td>
<td>Navigation & Naval Operations I</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>NS 302</td>
<td>Navigation & Naval Operations II</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>NS 201</td>
<td>Naval Weapons Systems</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>NS 402</td>
<td>Naval Leadership and Ethics</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4/6</td>
<td>NS 401</td>
<td>Leadership and Management</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>Evolution of Warfare OR</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS 310</td>
<td>Amphibious Warfare</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>NS 402</td>
<td>Naval Leadership and Ethics</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>NS 410</td>
<td></td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5/7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Social Sciences
Department Web site: www.iit.edu/departments/socsci/

The Department of Social Sciences, which encompasses the disciplines of political science, sociology and public administration, offers coursework and awards degrees at both the undergraduate and graduate levels. The faculty has special strengths in the fields of urban government and politics, organization and management, policy analysis, and science and technology studies, and concentrates many of its courses in these fields of specialization.

An undergraduate program is offered leading to a Bachelor of Science with a concentration in political science, as are minors in political science, sociology and public administration. The department participates with other IIT departments in offering interdisciplinary minors in legal studies, law and society, technology and human affairs, and urban studies.

At the graduate level, the department offers the master's degree in public administration (M.P.A.). Combined undergraduate B.S.M.P.A. degrees are offered combining several different undergraduate degrees with a master's degree in public administration. These combined degrees can usually be completed in five years. The department cooperates with the university's law school (Chicago-Kent College of Law) in offering a program leading to a bachelor's degree and law degree in six years instead of the usual seven years.

Faculty

Chair
William J. Grimshaw
214 Wishnick Hall
Ext. 75129

Professor
Grimshaw, Segerstrale

Associate Professors
Beam, DeForest, Nippert, Eng

Assistant Professors
Price

Senior Lecturer
Peters

Adjunct Professors
Cohen, Gillio, Kuner, Maloney, Marcus, Markle, Pounian, Risley, Stafford

Faculty Emeriti
Goldman, Stover
Political Science

Political science emphasizes making connections between the theory and practice of politics. Concerns range from perennial philosophical issues regarding justice, equality and freedom to practical political matters such as conflict resolution, collective decision making, and public policy. Opportunities are provided to consider how theoretical understandings of politics can inform political action and how participation in politics offers the basis for understanding it.

Since the ancient Greeks, knowledge of the affairs of state has always been deemed essential for all educated citizens. A knowledge of political science is central to any occupation or profession that needs an understanding of human behavior and the relations between people and governments or the analysis and communication of information about public problems. A background in political science is virtually indispensable to people in politics and government, whether at the state, local or national level. A political science undergraduate degree is common for the following types of professionals: lawyers, journalists, policy analysts, planners, scientists, business managers, politicians or medical people. Such professionals are in constant need for information on and understanding of the political, legal, governmental and public implications of their fields.

At IIT, most political science students emphasize American government, urban affairs, or public administration. A number of faculty also teach courses involving political and social issues relating to science and technology and to the workplace.

Students seeking a major in political science are required to complete 33 credits in political science. With department approval, up to 18 hours of coursework in related fields may be applied toward this requirement. Majors are also required to complete an approved course in statistics and a course in research methods. Students seeking a minor in political science are required to complete 15 credits in political science. Additional courses may be required to prepare students for professional training and for entrance in their chosen professional field, such as law or medicine.

Sociology

Sociology may be defined as the study of societies, communities, organizations and groups. It examines the structure and process of society and of the social groups that compose it. The focus is often on how people coordinate their activities to reach individual and collective goals in a wide range of settings including work, educational, religious, familial and political settings.

Sociological analysis explores social situations from the standpoint of the roles, meanings and norms that make behavior predictable and organized. It investigates how such patterns of interdependent activity arise and what sustains them; why they take one shape instead of another; how some change more rapidly than others; how they are related to each other, and how people justify and explain their organizations and activities. Thus, the field provides an understanding of the crucial problems facing our rapidly changing society.

Sociology provides intellectual and research skills, as well as a body of concepts and information useful to those entering numerous professions, including architecture, engineering, design, government, planning, social work, law and medicine. Students completing a minor in sociology are required to take five three-hour courses offered in the discipline.

Public Administration

Public administration emphasizes public management, policy analysis and financial management of governmental organizations. Public administration courses are generally offered only at the graduate level, but are generally open to qualified undergraduate students. A joint-degree program leading to a combined B.S./M.P.A. degree program is offered for students interested in government careers.
Political Science Curriculum

The political science curriculum consists of 126 semester hours, which are distributed as follows: at least 33 hours in political science (including PS 200 and PS 309); a minor of at least 15 hours; up to 29 hours of free electives; and completion of the general education program (four hours of Introduction to the Profession; six hours of Interprofessional Projects; five hours of mathematics, including MATH 221; two hours of computer science; 21 hours of humanities and social science; and 11 hours of natural science or engineering). The sequence for completing these hours over the course of four years is quite flexible. A typical program might be as follows.

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Hrs.</th>
<th>Semester 2</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to the Profession I</td>
<td>2</td>
<td>Introduction to the Profession II</td>
<td>2</td>
</tr>
<tr>
<td>English Composition or Humanities 100-level course</td>
<td>3</td>
<td>Humanities elective or Humanities 100-level course</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics course above MATH 122</td>
<td>3-5</td>
<td>Social science elective</td>
<td>3</td>
</tr>
<tr>
<td>Natural science or engineering course</td>
<td>3-5</td>
<td>CS 105 or CS 130</td>
<td>2</td>
</tr>
<tr>
<td>PS 200 American Government</td>
<td>3</td>
<td>Natural science or engineering course</td>
<td>3-5</td>
</tr>
<tr>
<td>Totals</td>
<td>14-18</td>
<td>Political science elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Semester 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities elective</td>
<td>3</td>
</tr>
<tr>
<td>Social science elective</td>
<td>3</td>
</tr>
<tr>
<td>MATH 221 or equivalent statistics course</td>
<td>3</td>
</tr>
<tr>
<td>Political science electives</td>
<td>6</td>
</tr>
<tr>
<td>Totals</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Semester 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social science elective</td>
<td>3</td>
</tr>
<tr>
<td>Minor course</td>
<td>3</td>
</tr>
<tr>
<td>Free electives</td>
<td>6</td>
</tr>
<tr>
<td>Political science electives</td>
<td>6</td>
</tr>
<tr>
<td>Totals</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Semester 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interprofessional project</td>
<td>3</td>
</tr>
<tr>
<td>Minor course</td>
<td>3</td>
</tr>
<tr>
<td>Free electives</td>
<td>6</td>
</tr>
<tr>
<td>Political science elective</td>
<td>3</td>
</tr>
</tbody>
</table>
Minors

Minors consist of at least five courses (minimum 15 semester hours) and are optional and frequently interdisciplinary. Since they provide a coherent set of ideas, concepts and educational experiences in a variety of areas, students may find that they enhance potential for professional development. Students who wish to pursue a minor must consult with advisers in their respective major departments.

NOTE: Not all minors are applicable to all majors.

Following are approved minors:

Aerospace Engineering (ME majors only): MMAE 311, MMAE 312, MMAE 436, MMAE 441, MMAE 443, MMAE 452.

Air Force Aerospace Studies: AS 101, AS 102, AS 201, AS 202, AS 301, AS 302, AS 401, AS 402. Attendance at a five-week field training camp may be substituted for AS 101, AS 102, AS 201 and AS 202.

Applied Solid-State Physics: PHYS 348, PHYS 412, PHYS 415, and at least two of the following courses: PHYS 300, PHYS 405, PHYS 418, PHYS 427, PHYS 428 and PHYS 437.

Architectural Technology: EG 105, EG 308, EG 309, EG 310, EG 312, EG 313.

Architecture (non-architecture majors only). This minor consists of 15 semester hours: ARCH 100, ARCH 109, either ARCH 113 or ARCH 400, either AAH 119 or AAH 120, and one of the following courses: ARCH 114, ARCH 200, ARCH 225, ARCH 309, ARCH 313 and ARCH 319. Those students preparing for competitive application to graduate programs in architecture are encouraged to select ARCH 114.

Artificial Intelligence: CS 200, CS 330, CS 331, CS 430, CS 480.

Biochemistry: BIOL 210, BIOL 225, BIOL 403, BIOL 404, BIOL 445, and either BIOL 515 or CHEM 538.

Biology: BIOL 107, BIOL 109, BIOL 115, BIOL 117, BIOL 210 and BIOL 214.

Chemistry: At least 15 credit hours must be completed from the following courses: CHEM 247, one of the sequences: CHEM 237,239 or CHEM 343,344; and electives chosen from: CHEM 321, CHEM 334, CHEM 335, CHEM 455.

Circuits and Systems (non-EE, non-CPE majors only): ECE 211, ECE 213, ECE 218 and one of the following sequences: ECE 308 and ECE 403, ECE 308 and ECE 438, or ECE 309 and ECE 420.

Computational Structures: CS 200, CS 330, CS 331, CS 430, MATH 471.

Computer Architecture: At least 15 hours must be completed from the following courses: CS 200, ECE 218, CS 331, CS 350, CS 470, CS 471.

Computer Networking: CS 200, CS 331, CS 350, CS 450, CS 455.

Construction Management: CAE 470, CAE 471, CAE 472, CAE 473, ECON 423.

Database Management: CS 200, CS 331, CS 425, CS 445 and one of the following courses: CS 426, CS 522, CS 525 or CS 529.

Electromechanical Design and Manufacturing (AE and ME majors only):

- **AE majors**: MMAE 445, MMAE 485, OM 312, ECE 218, ECE 242, ECE 441 (replaces PHYS 300).
- **ME majors**: MMAE 444, MMAE 485, OM 312, ECE 218, ECE 242, ECE 441 (replaces PHYS 300).

Energy/Environmental/Economics: This minor consists of 15 semester hours.

- Three credit hours in Special Problems, Projects or Research in energy.
- **Energy Sources and Conversion**: CHE 465, CHE 481, CHE 483, CHE 565, CHE 566, CHE 582, MMAE 425 and ECE 319.

Appropriate course substitutions may be made with the approval of the energy technology program advisers.

Engineering Analysis: MATH 332, MATH 402, MATH 461, MATH 471, MATH 488.

Engineering Graphics and CAD: EG 105, EG 305, EG 306, EG 405, EG 406, EG 419.

English Language/Linguistics: COM 301, COM 305, COM 425, COM 435, PHIL 326.

Environmental Engineering: ENVE 404, ENVE 463, ENVE 481 and one course from the following: ENVE 401, ENVE 426 or CHE 426, ENVE 450, ENVE 476, ENVE 480, ENVE 485, ENVE 501 and ENVE 506.

Fire Protection and Safety Engineering: CAE 421, CAE 422, CAE 424, CAE 425, CAE 426.
Graphics and CAR for Non-Engineers: EG 225, EG 325, EG 329, EG 425, EG 429.

Health Care and American Society: SOC 201, SOC 301, SOC 348, PS 332 and PS 351.

History: At least 15 credit hours must be completed, including at least six hours in European and six hours in American history at the 300 level or above.

Law and Society: At least 15 credit hours must be completed, including the following: PS 256, PS 318, SOC 348, PHIL 362.

Literature: At least 15 credit hours in 300-level English courses must be completed, including ENGL 337 or ENGL 338.

Logic and Philosophy of Science: At least 15 credit hours must be completed, including PHIL 340, PHIL 341, and at least three of the following courses: PHIL 326, PHIL 335, PHIL 342, PHIL 343, PHIL 345, PHIL 350.

Management: ACCT 151, ECON 211, MGT 351 and two of the following three courses: ECON 423, MKT 371 and OM 312. Chemical engineering majors should also take CHE 426 or another engineering science course.

Marine Option: MGT 351, NS 101, NS 202, NS 310, NS 402, NS 410.

Materials Engineering:
• ME majors: MMAE 361, MMAE 464, MMAE 474, MMAE 370 and one of the following courses: MMAE 467, MMAE 468 (or MMAE 476), MMAE 482, MMAE 483, MMAE 484, MMAE 486, MMAE 487, or an approved IPRO.
• AR majors: MMAE 361, MMAE 464, MMAE 474, MMAE 485 and one of the following courses: MMAE 467, MMAE 468, MMAE 482, MMAE 483, MMAE 484, MMAE 486, MMAE 487, or an approved IPRO.

Mechanical Engineering (AE majors only): MMAE 406, MMAE 431, MMAE 432, MMAE 433, MMAE 443, MMAE 485.

Military Science: MILS 101, MILS 102, MILS 201, MILS 107 or MILS 202 (these courses will at times be interchanged) or attendance at military training; MILS 301, MILS 302, MILS 401, MILS 402.

Naval Science: NS 101, NS 102, NS 201, NS 202 (attendance at the Naval Science Institute may be substituted for these courses), NS 301, NS 302, NS 401, NS 402.

Music: 15 credits in music theory or practice taken at VanderCook College of Music. Students should contact Educational Services concerning applicability of course toward graduation.

Operating Systems: CS 200, CS 331, CS 350, CS 351, CS 450.

Organizational Psychology: PSYC 221, PSYC 301, PSYC 303, PSYC 310 or SOC 201, PSYC 409.

Philosophy: At least 15 credit hours of philosophy courses numbered 300 or above.

Political Science: At least 15 credit hours in political science must be completed, including at least nine hours above the 200 level.

Polymer Science and Engineering: CHE 450 or CHEM 435 and at least three courses from the following: CHE 492, CHE 538, CHE 555, CHE 575, CHEM 581, CHEM 535, CHEM 537, CHEM 542, MMAE 467, MMAE 483, MMAE 487, MMAE 580; and at least one course from the following: CHE 426, CHE 489, CHEM 582, MMAE 451, MMAE 485, FPE 541.

Premedical Studies: This specialized minor is intended for those students who plan to apply to a medical school, and must be approved by the Premedical Advisory Committee. Note: Students who major in biology or molecular biochemistry and biophysics satisfy the premedical studies course requirements.

• Chemical Engineering: BIOL 107, BIOL 115, BIOL 117
• Environmental Engineering: BIOL 109, BIOL 115, BIOL 117, CHEM 239
• Electrical Engineering: BIOL 107, BIOL 109, BIOL 115, BIOL 117, CHEM 125, CHEM 237, CHEM 239
• Materials Engineering: BIOL 107, BIOL 109, BIOL 115, BIOL 117, CHEM 237, CHEM 239
• Mechanical Engineering: BIOL 107, BIOL 109, BIOL 115, BIOL 117, CHEM 125, CHEM 237, CHEM 239
• Computer Science: BIOL 107, BIOL 109, BIOL 115, BIOL 117, CHEM 124, CHEM 125, CHEM 237, CHEM 239.

Chemistry: BIOL 107, BIOL 109, BIOL 115, BIOL 117.

Physics: BIOL 107, BIOL 109, BIOL 115, BIOL 117, CHEM 237, CHEM 239.

Programming Languages: CS 200, CS 331, CS 350, CS 351, CS 440.

Psychology: At least 15 credit hours must be completed, including the following two required courses: MATH 221, PSYC 221.

Public Administration: PS 200 or PS 201, and PS 351, PS 452, PS 462, SOC 311.

Rehabilitation Services: PSYC 410, PSYC 411, PSYC 412, PSYC 583, PSYC 590.
Sociology: SOC 200 or SOC 201, plus an additional 12 credits chosen in consultation with the sociology faculty.

Software Engineering: CS 200, CS 331, CS 350, CS 351, CS 487.

Statistics: MATH 332, MATH 475, MATH 474, MATH 483, and either MATH 482 or MATH 487.

Professional and Technical Communication: COM 421 and 12 more credit hours of communication coursework in consultation with the director of the Professional and Technical Communication Program.

Technology and Human Affairs: At least 15 credit hours must be completed from the following: HIST 383, PHIL 370, PHIL 374, PS 332, PS 338, PS 339, SOC 303, SOC 362.

Telecommunications: CS 106 or CS 200; ECE 403, ECE 406, ECE 407 and ECE 436; and two telecommunications electives chosen from CS 331, CS 450, ECE 448, or ECE 449.

Urban Studies: HIST 350, HIST 352, PS 315, PS 317, and SOC 350 or SOC 411.

WebCom: COM 430, COM 431, COM 432 and six additional hours of coursework chosen in consultation with the director or the associate director of technical communication.
Special Programs

Double Undergraduate Degree Options

Depending upon their interest, capabilities, and goals, and with the permission of their advisers and department chairs, students may design their own double undergraduate degree programs or select one of the options listed below.

Bachelor of Science in Chemical Engineering/Bachelor of Science in Environmental Engineering

This 4.5-year program is designed to train students to be knowledgeable in the fundamental principles of chemical engineering science and design and to have a clear understanding of environmental issues and their assessment. A full description of the program is on page 57 in the departmental curricula section of this bulletin.

Bachelor of Science in Computer Engineering/Bachelor of Science in Electrical Engineering

Students interested in obtaining two undergraduate degrees in four years should consult an Department of Electrical and Computer Engineering adviser. This program is particularly applicable for freshman entering IIT with advanced placement credits.

Bachelor of Science in Mechanical Engineering/Bachelor of Science in Aerospace Engineering

Students interested in this program should consult an adviser from the Department of Mechanical, Materials and Aerospace Engineering.

Bachelor's/Master's Degree Options

IIT's double-degree options allow students to earn two degrees in as few as five years. The university has created bachelor's degree/master's degree options in fields in demand in professions where graduate training is essential. Students may enter some undergraduate/graduate double-degree programs either through the honors track or the standard track. Through the honors track, exceptional students may be admitted simultaneously into both the undergraduate and graduate schools when they apply to IIT. Admission will be based on their high school records, including grades, test scores, faculty/employer recommendation, and other documentation. Through the standard track, students are admitted into the undergraduate department offering the bachelor's portion of the program. Depending upon their interests, capabilities and goals, and with the permission of their advisers and department chairs, students may design their own combined degree programs or select one of the following options.
Bachelor of Science/Master of Business Administration

One of the most appealing career preparations is the combination of a bachelor's degree with the Master of Business Administration (M.B.A.) degree. IIT students who complete the necessary undergraduate management courses may earn both the bachelor's degree and the M.B.A. degree in about five years, rather than the usual six years. An exception exists in the case of architecture, where qualified students may earn a bachelor's degree and the M.B.A. degree in about six years, rather than the usual seven years. The undergraduate courses listed below, when included as part of the bachelor's degree program, replace graduate courses that are part of the M.B.A. program. This allows students to complete the M.B.A. with as few as 16 courses.

Taken as undergraduate: Advanced standing in graduate school for:
- ACCT 151 MBA 510
- MGT 351 MBA 520
- OM 312 MBA 570
- MKT 371 MBA 560

Bachelor of Architecture/Master of Business Administration

Qualified students may earn both the Bachelor of Architecture and Master of Business Administration degrees in about six years, rather than the usual seven years. Students who are completing their eighth semester, or an equivalent of 124 credit hours, in architecture at IIT may apply for entry into the joint program. They should take preparatory courses for the M.B.A. prior to entry and the GMAT during the eighth semester. Students who anticipate entering the program should seek advising in the Stuart Graduate School of Business and the College of Architecture early in their studies at IIT.

Bachelor of Architecture/Master of Civil Engineering

Qualified students regularly enrolled at IIT may earn both the Bachelor of Architecture and Master of Civil Engineering (M.C.E.). They must complete preparatory courses for the M.C.E. prior to entry into the combined program. Students who anticipate entry into the combined program and who intend to specialize in structural engineering must successfully complete the following courses as part of their undergraduate program in architecture: MATH 151, MATH 152, MATH 251, CAE 303, CAE 304, CAE 307, CAE 310, CAE 437, and CAE 438 in place of MATH 119, MATH 122, CAE 287, CAE 351, CAE 352, and as technical electives. Students who anticipate entry into the combined program and who intend to specialize in construction engineering and management must successfully complete the following courses as part of the technical electives in their undergraduate program in architecture: CAE 323, CAE 347, CAE 438 and CAE 457.

Students who anticipate entering into the program should seek advising in the Department of Civil and Architectural Engineering and the College of Architecture early in their studies at IIT.

Bachelor of Science in Political Science/Master of Public Administration

The requirements for the Bachelor of Science in Political Science and Master of Public Administration (M.P.A.) degree may be completed in five years. Qualified students interested in careers in the public sector are encouraged to begin their preparation at the undergraduate level and follow a course of study that will allow them to move directly into the M.P.A. program. Students would enroll as political science majors and would obtain the bachelor's degree at the end of the fourth year. Any time after the fourth semester, students can request admission to the M.P.A. program. Students granted provisional admission are then allowed to take one graduate public administration course each semester counted as part of their undergraduate program and also as part of their M.P.A. degree. A final decision on M.P.A. admission is made during the eighth semester, at the end of which the Bachelor of Science in Political Science is awarded. If a student is admitted to the M.P.A. program, the remaining course requirements are completed during the fifth academic year.
Combined Undergraduate/Graduate Law Programs (Leading to B.S./J.D. degrees)

Students in these programs do their undergraduate program at the Main Campus of IIT and the law school portion of the program at IIT’s Chicago-Kent College of Law. Several combined undergraduate and graduate law degree programs are available. Political science and psychology majors in these programs can complete an undergraduate degree and law degree in six years, rather than the usual seven years. Students with other majors who enter with substantial college credit, or who place out of a substantial number of courses, may also complete both degrees in six years.

Pre-law undergraduate students also have access to seminars, pre-law advising, assistance preparing for the LSAT, pre-law internships, and the mentoring program.

Honors Law Program

Students apply to both the undergraduate program and the law school prior to the beginning of their freshman year and may receive admission to both the undergraduate program and the J.D. program at the time of their matriculation. Admission to the J.D. program is conditioned upon the following criteria prior to beginning law school coursework:

a) maintaining a record that the law school director of admissions determines to be consistent with the character and fitness requirements of the bar examining authorities
b) taking the LSAT exam
c) completing a law school application
d) fulfilling the undergraduate general education requirements and other requirements specified by their home department for students in the Honors Law Program.
e) completing required undergraduate courses.

Students who major in political science or psychology normally complete both their B.S. and J.D. degrees in six years instead of the usual seven years. Students in other majors who enter with sufficient college credit, or who place out of a substantial number of courses, may also accelerate the completion of both degrees, finishing in six years instead of the usual seven years.

Bachelor of Science/Juris Doctor

This program is available to qualified students who are already enrolled at IIT. Students may apply to this program after their sophomore or junior year. Generally students with a GPA of 3.25 and an LSAT equal to the median score at the law school are admitted to the program. Students who can complete their general education and major course requirements prior to the beginning of the fall semester of their senior year can complete their undergraduate and law degrees in six years instead of the usual seven. Engineering majors usually take seven years to complete the program. Admission to the law school during a student’s sophomore year is contingent on the student maintaining a record which the law school director of admissions determines is consistent with the character and fitness requirements of the bar examining authorities. Students interested in this program should notify the pre-law adviser as soon as possible in order to obtain assistance in planning course schedules to meet both law school and undergraduate course requirements in the minimum amount of time.
B.S./M.D. Programs

In addition to premedical studies, IIT offers two dual-degree programs in which high-ability applicants simultaneously go through a joint admissions procedure at IIT and a participating medical school. Students earn a bachelor’s degree from IIT and a medical degree from the medical school. The MCAT will not be required for admission but may be required for tracking purposes. These innovative programs are designed to meet the urgent and intensifying need for technologically proficient physicians and researchers. More information, can be obtained from the Office of Undergraduate Admission at 312.567.3025.

NT/Chicago Medical School Honors Program in Engineering and Medicine

The NT/Chicago Medical School Honors Program in Engineering and Medicine is an eight-year program open to freshman applicants in which students complete their undergraduate degree at IIT in chemical engineering, mechanical engineering, electrical engineering, computer science or molecular biochemistry and biophysics during the first four years of the program. The final four years are spent at the Finch University of Health Sciences/Chicago Medical School, during which the student earns the M.D. degree.

IIT/Rush Medical College Combined Honors Program in Engineering and Medicine

(Junior-year transfer program)

The IIT/Rush Medical College Program is a six-year program that begins in the student’s junior year. It is open to IIT sophomores and to students attending other colleges or universities who transfer to IIT at the end of their sophomore year. Students admitted to this program will complete their undergraduate degree at IIT in chemical engineering, mechanical engineering, electrical engineering, computer science or molecular biochemistry and biophysics during the first two years of the program. As part of this experience, they will participate in a year-long research project that bridges engineering, science and medicine. The final four years are spent at Rush Medical College, during which time the student earns the M.D. degree. This program is designed for students who intend to become research-oriented physicians.

Study Abroad

IIT encourages students of all majors to consider studying abroad for part of their undergraduate career. Studying abroad enriches the college experience by providing a different intellectual or cultural environment and often enriches the academic program by providing special research facilities or by giving breadth to the major discipline.

Exchange Programs and Study Abroad Opportunities

IIT has undergraduate exchange programs with the following universities: Robert Gordon University, Scotland, architecture; Institute National des Sciences Appliques (INSA), Lyon, France, engineering; and Ecole Speciale Traveaux du Public (ESTP), Paris, engineering. Students interested in exchange programs should first contact the associate dean of the Undergraduate College and then the director of the International Cultural Center during their second year of study. IIT has undergraduate exchange programs with the following universities: Robert Gordon University, Aberdeen, Scotland, in architecture and engineering; Institute National des Sciences Appliques (INSA), Lyon, France, in engineering; Ecole Speciale (accentue on last e) Traveaux du Publics (ESTP), Paris, in civil engineering; and Kungliga Tekniska Hogakolan (KTH), Stockholm, Sweden, in engineering and science. Students interested in learning more about these programs should contact the director of the International Center.

Students may participate in study abroad opportunities other than the formal exchange programs listed above. Recently students have attended universities in Krakow, Fribourg, Valencia, Madrid, Helsinki, Gotteborg, London and Prague. Prior to participating in a study abroad program, students are required to prepare and submit academically sound plans of study.

Students wishing to participate in an exchange program or to study abroad should first contact the director of the International Center for information, application forms, and procedural guidelines. The application process begins approximately one year before study abroad is anticipated. Only students whose applications are approved by the Study Abroad Oversight Committee are permitted to participate in exchange or other study abroad programs.
Post-Baccalaureate Certificate and Certificate Programs

Certificate Programs

The Department of Civil and Architectural Engineering offers two certificate programs: one in architectural technology and one in engineering graphics and CAD. These programs are designed to prepare specialists in graphics for positions in business and industry. Students completing the specified courses with satisfactory grades will be awarded a certificate of completion. Consult the civil and architectural engineering section in this bulletin for further information.

Post-Baccalaureate Certificate Programs

IIT offers a number of certificate programs at the graduate level including bioengineering, computer networking and telecommunications, computer science, construction management, earthquake and wind engineering design, electrical and computer engineering, energy/environment/economics, environmental studies, food process engineering, geoenvironmental engineering, infrastructure engineering, and management, intelligent information systems, process operations management, psychology, software engineering, technical communication, transportation systems planning, and wireless communications engineering. For information on post-baccalaureate certificate programs, please consult the Graduate College.

Joint-Engineering Programs

IIT has established joint-engineering programs with the following Chicago-area institutions: DePaul University, Wheaton College, Benedictine University, Elmhurst College, Dominican University and University of St. Francis. These programs differ from a 3+2 transfer program in that students earn two bachelor's degrees: an engineering degree from IIT and a bachelor's degree in an approved discipline from their host school. Students will live on the campus of their host school while completing the requirements for both degrees.

Admission into the Joint-Engineering Program at another institution does not guarantee admission to IIT. For additional information, students should contact the Office of Educational Services.
Premedical Programs
Department Web site: www.iit.edu/~premed

IIT provides excellent preparation for students planning to attend medical or other health-related professional schools. Students majoring in various fields, listed below, earn a B.S. degree and, at the same time, fulfill the pre-requisites for medical school:

- Science (biology, chemistry, molecular biochemistry and biophysics, physics) with a minor in premedical studies (see p. 34, 39, 105).
- Psychology for the Professions (see p. 34, 86)
- Engineering (chemical, environmental, electrical, metallurgical and materials, mechanical) with a minor in premedical studies (see p. 50, 72, 80, 110).
- Computer science with a minor in premedical studies (see p. 66, 105).

Rapidly advancing technology is changing the practice of medicine. Physicians who have a strong technical background will be among the best prepared to utilize the new technology. IIT's curricula emphasize technical proficiency as well as communication and teamwork, which help students develop the interpersonal skills that are critical in the health professions.

Students interested in pursuing careers in medicine, pharmacy, dentistry, osteopathy, optometry and veterinary science should contact the Premedical Office for further information.

Each student works with a departmental premedical adviser to structure a course of study to meet medical school requirements and to prepare for the Medical College Admission Test (MCAT) in the junior year.

The following is a list of IIT science courses that fulfill the premedical requirements of most medical schools: CHEM 124, CHEM 125, CHEM 237, CHEM 239, PHYS 123, PHYS 221, BIOL 107, BIOL 109, BIOL 115, BIOL 117. To improve MCAT scores, BIOL 403 and BIOL 404 are recommended instead of BIOL 117. To improve performance during the first year in medical school, BIOL 430 and BIOL 445 are recommended.

The Premedical Advisory Committee members monitor academic progress, gather information about volunteer and research opportunities, guide the student through the medical school application process, advise in choosing a medical school and in preparation of the AMCAS application, collect and prepare recommendation letters, and assist in preparation for interviews with medical school admission committees.

Premedical Advisory Committee:
- Kenneth Stagliano (Chair) (BCPS)
- Dean Chapman (BCPS)
- Martha Evens (CS)
- Krishna Pagilla (CHEE)
- Hamid Arastoopour (CHEE)
- Robert Roth (BCPS)
- Michael Young (PSYC)
- Miles Wernick (ECE)

Premedical Office:
116 Engineering 1
312.567.8852

Post-Baccalaureate Premedical Program

IIT prepares college graduates for application and admission to medical school. In many cases, post-baccalaureate students were not pre-med in college and took few, if any, premedical science courses. In other cases, post-baccalaureate students are not recent graduates and wish to refresh their knowledge, improve their grade point averages, or prepare for the Medical College Admission Test (MCAT). Post-baccalaureate students enroll on a full-time or a part-time basis in regular courses along with other IIT students and are advised by the IIT Premedical Advisory Committee. Students in the program have complete access to courses, faculty advising, student services, and campus facilities.

More information is available through the Premedical Office.
Reserve Officers Training Corps (ROTC)

ROTC programs are available as minors in the regular IIT degree programs. These programs enable men and women to become commissioned officers in the U.S. Air Force, Army, Marine Corps or Navy upon graduation with a bachelor's degree. ROTC/IIT combined scholarships in many cases allow winners to attend IIT free of charge. Contact the IIT Admission Office or any of IIT's ROTC departments for scholarship/program information.

VanderCook College of Music

Full-time IIT students in good standing may take courses offered at VanderCook College of Music without additional tuition payment. Some non-performance VanderCook courses may be used to satisfy part of the general education requirement for an IIT degree. Performance courses may be used as free electives. Admission to VanderCook courses is on a space-available basis, and students may be asked to audition or satisfy other requirements prior to acceptance into a VanderCook course. IIT students wishing to take courses at VanderCook College of Music should contact the Office of Educational Services for farther information.
Course Descriptions

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art and Architectural History</td>
<td>120</td>
</tr>
<tr>
<td>Accounting</td>
<td>120</td>
</tr>
<tr>
<td>Architecture</td>
<td>120</td>
</tr>
<tr>
<td>Air Force Aerospace</td>
<td>123</td>
</tr>
<tr>
<td>Biology</td>
<td>124</td>
</tr>
<tr>
<td>Civil and Architectural Engineering</td>
<td>125</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>130</td>
</tr>
<tr>
<td>Chemistry</td>
<td>133</td>
</tr>
<tr>
<td>Computer Engineering</td>
<td>135</td>
</tr>
<tr>
<td>City and Regional Planning</td>
<td>135</td>
</tr>
<tr>
<td>Communications</td>
<td>136</td>
</tr>
<tr>
<td>Computer Science</td>
<td>137</td>
</tr>
<tr>
<td>Electrical and Computer Engineering</td>
<td>140</td>
</tr>
<tr>
<td>Economics</td>
<td>145</td>
</tr>
<tr>
<td>Engineering Graphics</td>
<td>145</td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td>147</td>
</tr>
<tr>
<td>French</td>
<td>148</td>
</tr>
<tr>
<td>German</td>
<td>149</td>
</tr>
<tr>
<td>History</td>
<td>149</td>
</tr>
<tr>
<td>Humanities</td>
<td>151</td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>151</td>
</tr>
<tr>
<td>Literature</td>
<td>151</td>
</tr>
<tr>
<td>Mathematics</td>
<td>153</td>
</tr>
<tr>
<td>Management</td>
<td>155</td>
</tr>
<tr>
<td>Military Science</td>
<td>155</td>
</tr>
<tr>
<td>Marketing</td>
<td>156</td>
</tr>
<tr>
<td>Mechanical, Materials and Aerospace Engineering</td>
<td>156</td>
</tr>
<tr>
<td>Materials Science</td>
<td>161</td>
</tr>
<tr>
<td>Manufacturing Technology</td>
<td>161</td>
</tr>
<tr>
<td>Naval Science</td>
<td>162</td>
</tr>
<tr>
<td>Operations Management</td>
<td>163</td>
</tr>
<tr>
<td>Public Administration</td>
<td>163</td>
</tr>
<tr>
<td>Philosophy</td>
<td>164</td>
</tr>
<tr>
<td>Physics</td>
<td>165</td>
</tr>
<tr>
<td>Political Science</td>
<td>168</td>
</tr>
<tr>
<td>Psychology</td>
<td>170</td>
</tr>
<tr>
<td>Sociology</td>
<td>172</td>
</tr>
<tr>
<td>Spanish</td>
<td>175</td>
</tr>
</tbody>
</table>
Numbers in parentheses indicate (lecture hours-laboratory hours-credit hours).

Letters in parentheses:
(C) Identifies courses that fulfill the communications general educational requirements
(D) CAE design courses
(H) Identifies courses that fulfill humanities general educational requirements
(N) Identifies courses that fulfill natural science or engineering general educational requirements
(P) ECE, CPE professional elective
(S) Identifies courses that fulfill social sciences general education requirements
(T) CS technical elective.

Art and Architectural History

AAH 119, 120
History of World Architecture I, II
Comprehensive background as well as concentration on individual cultures and their architects from ancient to modern times. Discussion of architectures from around the world. Specific details and expressions of more generalized theories and strategies will be explored. (3-0-3); (3-0-3) (C) (H)

AAH 301
Thinking About Art
A course designed for those who find art pleasing, meaningful or significant and who want to extend the range of their sensibilities. Theories of art will be studied for insight, as well as for historical interest and continuity. Works of art will be studied for their intrinsic value, for their relation to ideas and events, and as cultural artifacts. Regular visits to area museums and galleries will be required. Prerequisite: a 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

AAH 491
Independent Reading and Research
For advanced students. Prerequisite: Consent of the department. (Credit: Variable) (H) (C)

AAH 494
Senior Seminar: Theories of Architecture in Historical Perspective
An investigation of the development of formal architectural theory. Writings by architects from antiquity to the present will be studied, analyzed, and criticized. The relation between theory and practice will be emphasized. The implications of particular theories for such other questions as environment, tradition, change, innovation, revolution and meaning will be considered. Prerequisites: AAH 119, AAH 120 or consent of instructor. (3-0-3) (C)

Accounting

ACCT 151
Financial and Managerial Accounting
Basic financial and managerial accounting topics: GAAP, the major financial statements, accrual accounting, financial reporting alternatives, financial statement analysis, cost behavior, cost systems, short- and long-term decision-making, and product costing. (3-0-3) Offered in fall and spring.

Architecture

ARCH 100, 200
Introduction to Architecture
The fundamental objectives and philosophy underlying the architectural curriculum at IIT; the role of the architect as a professional related to the heritage of Chicago architecture; orientation to the local cultural, institutional and architectural resources. (1-0-1); (1-0-1) (C)

ARCH 109, 110
Freehand Drawing I, II
Drawing from still life, human figure and architecture, both out-of-doors and in the studio; drawing from life in various mediums. ARCH 109 is prerequisite for ARCH 110. (0-4-2); (0-4-2)

ARCH 113, 114
Architecture Studio I, II
Studio exercises to develop excellence in craftsmanship and visual sensitivity as a foundation for a basic architectural language. Problems of various lengths will deal with the technical skills of drawing and model-making materials and in both two and three dimensions. Using problems of both an abstract and an architectural character, this course will build verbal communication skills and model shop ability. ARCH 113 is prerequisite for ARCH 114. (0-12-6); (0-12-6)

ARCH 125
Introduction to Architectural Computing
The class introduces concept development, design thinking and problem solving related to architectural representation and production technique (digital and analog). The class will look critically at recent digital design developments, as well as introduce students to the history of each “type” of computer program; and the class will introduce students to the basic skills required to productively work with a variety of practice-based software programs. The class will also introduce 3D “craft-based” thinking/working. (1-2-3)

ARCH 201, 202
Architecture III, IV, Structures, Building Systems, and Assemblies
The development of architectural principles through the study and analysis of building materials. Development of the graphic language in architecture. Consideration of the appropriate use of materials, energy and clear construction as the basis of architecture. Prerequisites: ARCH 113, 114. ARCH 201 is prerequisite for 202. (0-10-5); (0-12-6)

ARCH 225
Computer-Aided Design in Practice
Review of drafting, modeling and rendering computer hardware and software used in the practice of
architectural design. Design and management issues are explored with the extensive use of PC CAD systems, including AutoCAD. Prerequisite: ARCH 125. (2-2-3)

ARCH 305,306
Architecture V, VI
Continued development of architectural principles of ARCH 201 and 202 through the correlation of design process and building systems. Consideration of the interrelation of building, programming, site planning, structure, enclosure systems, energy consumption, and environmental control systems, and the cultural concepts supporting their organization. Prerequisites: ARCH 201, ARCH 202. ARCH 305 is prerequisite for ARCH 306. (0-12-6); (0-12-6)

ARCH 319
History of Modern Architecture
These courses will offer specialized and advanced studies in the history and critical interpretation of architecture in the modern era. (3-0-3) (C)

ARCH 320
History of Chicago Architecture
This course focuses on the Chicago School and offers specialized and advanced studies in the history and critical interpretation of various aspects of the related art, architecture and technology. (3-0-3) (C)

ARCH 321
History of Modern Thought in Architecture: 20th Century
Mies, Gropius, Le Corbusier and others constructed modernist canon as much with their manifestos - provocative, assertive, entirely subjective texts packaged in the rhetoric of objectivity-as with their buildings. This course studies the major texts and concepts that have produced architecture in the twentieth century. Study will be made of the modernist legacy and its basis in a canon that has experienced transformations across the course of decades, while retaining essential principles and mythic status today. (3-0-3) (C)

ARCH 331, 332
Visual Training I, II
Aesthetic expression as experience. Exercises in the study of form: proportion and rhythm, texture and color, mass and space. Exercises in visual perception and aesthetic judgment. Isolation and analysis; interdependence and integration of sensuous qualities. Aesthetic unity under restrictive conditions. ARCH 331 is prerequisite for ARCH 332. (3-0-3); (3-0-3)

ARCH 333
Visual Training III
Spatial studies with planes and volumes of various materials. Aesthetic expression as experience. Exercises in the study of form: proportion and rhythm, texture and color, mass and space. Exercises in the visual perception and aesthetic judgment. Isolation and analysis; interdependence and integration of sensuous qualities. Aesthetic unity under restrictive conditions. Prerequisites: ARCH 331, ARCH 332. (3-0-3)

ARCH 403, 404
Mechanical & Electrical Building Systems for Architects I, II
Selection and design of building support systems: heating, ventilating, air conditioning, water supply, sanitary and storm drainage, power distribution, lighting, communications, and vertical transportation. Systems are analyzed for their effect on building form, construction cost and operating efficiency. ARCH 309 is prerequisite for ARCH 310. (3-0-3); (3-0-3)

ARCH 408
Freehand Drawing
A multi-purpose drawing course offering students a chance to develop on-site sketching skills and creative expression in drawing through a combination of sketching field trips and in-class drawing assignments. (0-3-3)

ARCH 409
Advanced Freehand Drawing
Advanced development of freehand drawing skills in various mediums; still life, human figure, the natural and built environment; studio and field settings. Prerequisites: ARCH 110, ARCH 408 or permission of the instructor. (0-3-3)

ARCH 413
Architectural Practice
Lectures and practical problems dealing with specifications, specification writing, administration of construction, contracts, building law, and professional practice. (3-0-3) (C)

ARCH 414
Professional Practice: Building Case Studies
Case study analysis of buildings, including the design process, building detailing, construction methods, government regulation, owner satisfaction and post-construction forensics. (3-0-3) (C)

ARCH 417, 418
Architecture VII, VIII
Structure as an architectural factor; space as an architectural problem; proportion as a means of architectural expression; the expressive value of materials; painting and sculpture in their relationship to architecture. Application of principles in comprehensive projects involving program, site, and code analysis. Prerequisites: ARCH 305, ARCH 306. ARCH 417 is prerequisite for ARCH 418. (0-12-6); (0-12-6)

ARCH 419, 420
Architecture IX, X
These studios represent the most extended and developed exercises in macro planning issues. First priority is given to the urgent needs of our environment such as housing, schools or community buildings for urban centers; projects reinforce the entire curriculum, emphasizing complex relationships of buildings in an urban landscape taking all factors into consideration. Students increase their ability to make value judgments, and learn to critically review, test and improve conventional concepts of architecture relative to current demands placed upon the profession. These studios also offer students a variety of possible specialization topics. (0-12-6); (0-12-6)

ARCH 421,422
Energy Conscious Design I, II
The application of energy conservation methods and renewable energy sources, such as wind power and
passive solar systems, will be examined in the development of building energy budgets for a variety of building types. ARCH 421 is a prerequisite for ARCH 422. (3-0-3; 3-0-3)

ARCH 423
Architectural Programming
Study of the principles of problem definition, problem solving and decision making in the process of design. Specific research methods are reviewed, including those with computer-aided data collection potential. Coursework includes: identification of client/project requirements and constraints; development of a building/project program; cost analysis; development of relevant design options; and presentation skills development. (3-0-3) (C)

ARCH 424
Architectural Construction Management
A survey of the techniques and procedures of construction management as it relates to architectural practice. The organization of the building team, the collaborative design process, cost control, project scheduling, purchasing, accounting and field supervision are described and documented. (3-0-3)

ARCH 425
Computer-Aided Design in Practice
Review of drafting, modeling and rendering computer hardware and software used in the practice of architectural design. Design and management issues are explored with the extensive use of PC CAD systems, including AutoCAD. Prerequisite: ARCH 125 or graduate standing. (2-2-3)

ARCH 426
3-D Modeling in CAD
A review of 3-D modeling concepts, computer-aided rendering concepts and methods in the development of architectural design. Extensive use of PC CAD software is expected. Prerequisites: ARCH 425 and AutoCAD. (3-0-3)

ARCH 427
Image Processing in CAD
Review of advanced methods in creating 2-D and 3-D images and their manipulation/transformation to produce architectural presentations, including scanning, image composition and texture cloning. Prerequisites: ARCH 425 and 426 or consent of instructor. (3-0-3)

ARCH 428
3-D Animation in CAD Presentations
Review 3-D modeling concepts for animation, preparing camera movements, lighting conditions, special effects and the digital editing of animation sequences. Extensive use of PC animation and editing software. Prerequisites: ARCH 425 and 426 or consent of instructor. (1-4-3)

ARCH 429
CAD Programming
Review programming in CAD systems; programming basics in Autocad, extensive creation of 2-D and 3-D objects, data interrogation, manipulation, and extraction, and 2-D and 3-D parametric and rule-based design. Investigation of form creation, based on mathematical relationships and random generation. Prerequisites: ARCH 425 and 426 or consent of instructor. (1-3-3)

ARCH 441, 442
Landscape Architecture I, II
The natural landscape as a basis of landscape work. Ecotones and their relation to vital habitats including plant materials, their selection and installation. The focus will be on housing with its associated planting including various gardens both formal and informal. ARCH 441 is a prerequisite for ARCH 442. (2-2-3); (2-2-3)

ARCH 454
Contemporary Chicago
Architecture: Case Studies
Contemporary architecture and urban design projects in Chicago presents and invaluable opportunity to learn about some of the most advanced applications in practice today. By examining significant projects currently underway, this course will investigate project execution, design concepts and the various forces affecting projects' definition and results. Close scrutiny of all the components and personnel will give a better understanding of the complex synergies, advanced technologies, and adept project teams necessary for successful innovative architecture in urban planning. (3-0-3)

ARCH 456
Topics in Modernism:
Post World War II - Europe
Historical and critical study of a significant cultural and intellectual shift that occurred in Modern architecture in Europe in the immediate post-World War II period. This seminar will discuss the retaliation of this new agenda within the development of Modern architecture from the ethically based modernism of Ruskin and Morris in the 19th century to the creation of the “Modern Movement” in the inter-war years. Examination of the manner in which this theoretical position has been expressed in architectural practice since the 1950s. (3-0-3)

ARCH 460
Chicago Architecture Practicum
This course synthesizes the subject of architecture through a series of presentations and field trips. Students lead the ARCH 200 class in exercises on observation and documentation of the urban environment. Prerequisite: Consent of instructor. (1-4-3)

ARCH 467
Advanced Materials Workshop
This course is designed to involve the students with the architectural craft of materials that can be applied to model and prototype construction. Included will be industrial tours and a product of the student's own choosing. (1-4-3)

ARCH 468
Drawing From Travel
A drawing course that develops the perceptual and technical skills critical to drawing in the field. Particular emphasis will be placed on the freehand travel sketch and its capacity to evoke both the physicality and character of a place. Production of a comprehensive drawn record of travels in the form of a journal/sketchbook is required. Various media will be explored. Requisite: European Study Program. (0-6-3)
ARCH 469
Urban Design in Europe
This seminar course will explore current notions of urbanity as observed in the built environment of some cities in Europe. Projects and discussions will complement the design work undertaken in the architecture design studio. Assignments will focus on documentation and analysis of the various daily patterns and rituals of habitation. Requisite: European Study Program. (3-0-3)

ARCH 470
Image City: Mediation of Space
This seminar surveys the interaction between media and the city from the 19th century to the present. A history of the technological innovations of the past two hundred years turns out to be, in large, part a history of the development of the contemporary city, and no account of contemporary urban issues can be considered complete without taking into account the role played in our lives by the media. Accordingly, every space we encounter or create has to be considered mediated. (3-0-3)

ARCH 471
Architecture and the City
Students will investigate in a seminar format the development and design of cities through the analysis of urban culture, society, economics, government, economy and architectural theory. (3-0-3)

ARCH 473
Conflict and Time
This seminar employs comparative studies of other arts, in particular cinema, to illuminate architectural esthetics and the creative process. (3-0-3)

ARCH 474
Production/Design
This seminar examines aspects of design in motion pictures. The premise underlying the course is that the act of perception constitutes an act of design; we produce and design the world we perceive. This becomes particularly evident through analysis of the artificially constructed, illusory reality of films. (3-0-3)

ARCH 488
Long-Span and Special Structures
Introduction of structural systems for long spans and special structures. The structural behavior will be discussed and the required strength and stiffness will be evaluated. Individual projects will be assigned to students to be presented at the end of the course. (3-0-3)

ARCH 489
Structural Systems for Tall Buildings and Long-Span Structures
This course reviews the historical development of the interaction of the structure with architecture and explores future trends and directions. The suitability of different materials and systems will be studied, with emphasis placed on efficiency. (3-0-3)

ARCH 494
Senior Theory Seminar
An investigation of the development of formal architectural theory in the West. Writings by architects from Vitruvius to the present will be studied, analyzed, and criticized. The relation between theory and practice will be emphasized, as well as the implications of particular theories for such other questions as tradition, change, innovation and revolution. (3-0-3)

ARCH 495
Technology as Design
Since the development of cast iron as a viable construction material in the mid 1800's, there has been a path of architecture that has explored the open-ended possibilities of technology. Integrated within the culture, this determination to use the technology of one's time as the creative generator of a new evolving architecture becomes the historical precedent of the thesis of this course. (3-0-3)

ARCH 497
Special Projects
Independent study of projects and problems. Students must be advised and have consent of the instructor and approval of the dean. (Credit: Variable)

Air Force Aerospace

AS 101
The Foundations of the USAF I
Introduction to the U.S. Air Force and Air Force ROTC. This course will focus on officership and professionalism, military customs and courtesies, health and physical fitness, and drill and ceremonies. Leadership Laboratory will continue to emphasize the application of customs and courtesies, health and physical fitness, and drill and ceremonies. (1-2-1) (C)

AS 102
The Foundations of the USAF II
Introduction to the history and organization of the U.S. Air Force. The origin of the Air Force will be described and the current command structure will be reviewed. Leadership Laboratory continued. (1-2-1) (C)

AS 201
The Evolution of USAF Air and Space Power I
Examines general aspects of air and space power through a historical perspective. Historical examples are provided to show the development of Air Force capabilities and missions from early flight through the Korean War. Communication skills are also refined. Leadership Laboratory continued. (1-2-1) (C)

AS 202
The Evolution of USAF Air and Space Power II
Continuing study of topics covered in AS 201. Covers the period from the Vietnam War through today. Also, communication skills are refined. Leadership Laboratory continued. (1-2-1) (C)

AS 301
Air Force Leadership Studies I
Study of leadership authority, principles and accountability, management fundamentals, oral and written presentation and counseling skills required of an Air Force junior officer. Advanced Leadership Laboratory compliments this course by providing leadership experience in officer-type activities. (3-2-3) (C)
AS 302
Air Force Leadership Studies II
Study of professional knowledge, motivation, empowerment, mentoring, delegation, quality management, Air Force personnel and evaluation systems, leadership ethics, and oral and written presentation skills required of an Air Force junior officer. Continuation of Advanced Leadership Laboratory. (3-2-3) (C)

AS 401
National Security Affairs
This course is designed for college seniors and gives them the foundation to understand their role as military officers in American society. The course closely examines the national security process, regional studies, Air Force doctrine, and current issues affecting the military profession. Emphasis is also given on refining oral and written communication skills. Continuation of Advanced Leadership Laboratory. (3-2-3) (C)

AS 402
Preparation for Active Duty
Designed for college seniors and gives them the foundation to understand their role as military officers in American society. This course builds upon the subject matter previously covered in AS 401 and also further examines regional studies, advanced leadership ethics, military justice, the military as a profession, and officer preparation. Preparation for active duty life is one of the core elements of this course, and students will learn the role of an Air Force commander in addition to the different services and programs available on a military installation. Emphasis is also given on refining oral and written communication skills. Continuation of Advanced Leadership Laboratory. (3-2-3) (C)

Leadership Laboratory
A study of Air Force customs and courtesies, drills and ceremonies, issuing military commands, instructing, directing and evaluating the preceding skills, studying the environment of an Air Force officer, and learning about the areas of opportunity as available to commissioned officers. Planning and controlling of military activities of the cadet corps, preparation and presentation of briefings and other oral and written communications. Providing interviews, guidance and information which will increase the understanding, motivation and performance of other cadets.

Biology

BIOL 100
Introduction to the Profession
Introduction to the biological sciences, scientific method, computing tools, and interrelations of biological sciences with chemistry, physics and other professions. (2-0-2) (C)

BIOL 107
General Biology Lectures
This course emphasizes biology at the organismal level. It provides an introduction to the study of the structure and function of plants and animals, their origin and evolution, their reproduction and genetics, their diversity and ecological relations. BIOL 107 and 109 plus BIOL 115 and BIOL 117 constitutes a one-year sequence in biology. Acceptable as part of the science component of the General Education Program. (3-0-3)

BIOL 109
General Biology Laboratory
A laboratory course to accompany BIOL 107. Prerequisite: Concurrent or previous enrollment in BIOL 107. (0-4-2) (C)

BIOL 115
Human Biology
This course covers selected topics in biology of particular relevance to humans and to human health and disease. Topics include biology of human cells and selected organ systems; neurobiology including psychoactive drugs and drug addiction; development and birth defects; genetics and genetic diseases; toxicology; the immune system and immunologic diseases such as AIDS; human nutrition and nutritional effects; and microbial human diseases. BIOL 115 plus BIOL 107 (General Biology) constitutes a two-semester sequence in science. (3-0-3)

BIOL 117
Experimental Biology
A biology laboratory course to accompany BIOL 115. A cellular approach to the functional organization of organs and organ systems. Laboratories will include the application of experimental methods and techniques for understanding the relationships between cell function and structure. (0-4-2) (C)

BIOL 210
Microbiology Lectures
A study of microorganisms and their relation to water, sanitation, soil, disease, biotechnology, bioremediation, bioinformatics and genetic engineering. Prerequisite: BIOL 107 or BIOL 115 or equivalent. (3-0-3)

BIOL 214
Genetics and Genetic Technology
An introduction to genetic engineering and genetics designed for both biology and other science majors. The course will focus on how the study of genetics has been adapted, from contemporary recombinant DNA research to the solution of various practical problems in biotechnology, agriculture, the environment and the diagnosis and treatment of disease. Basic aspects of transmission, molecular and population genetics will serve as the background. Prerequisite: One semester of college-level biology, e.g., BIOL 107 or 115, or consent of the instructor. (3-0-3)

BIOL 225
Microbiology Laboratory
Isolation and identification of microorganisms, microbial growth, design of culture media, microorganisms as biocatalysts, environmental microbiology, quantitative microbiology, introduction to microbial genetics, and genetic engineering. Prerequisites: Concurrent or previous enrollment in BIOL 210 or consent of instructor. (0-4-2) (C)

BIOL 320
Biological Literature
Library research on an advanced topic in biology, directed by a faculty member. (2-0-2) (C)
BIOL 403
Biochemistry Lectures
Molecular organization of cell structures and cell membranes. Proteins, nucleic acids, carbohydrates and lipids, their molecular structure, characterization and chemical reactions. Enzymes and enzyme-catalyzed reactions and metabolism. Prerequisite: BIOL 107 or BIOL 115 and CHEM 237. (4-0-4)

BIOL 404
Biochemistry Laboratory
Analytical methods in the chemistry and metabolism of proteins, amino acids and nucleic acids, including chromatography, spectrophotometry and electrophoresis. Enzyme reactions. Prerequisite: Previous or concurrent enrollment in BIOL 403. (0-6-3) (C)

BIOL 414
Genetics for Engineering Scientists
A course in genetics and genetic engineering designed for advanced students in engineering and related disciplines. The course will cover genetics at the molecular, cellular, organismal, and population levels as a basis for discussions of practical applications of recombinant DNA technology in industry and the fields of medicine, agriculture, etc. A term paper will be required in addition to in-class examinations. Prerequisite: Consent of the instructor. (3-0-3) (C)

BIOL 423
Microbial Genetics Laboratory
Quantitative techniques in microbial genetics including mutagenesis, isolation and characterization of mutants, hybridization, random spore analysis and gene complementation. Basic techniques used in recombinant DNA technology (genetic engineering) will include restriction mapping, cloning of DNA fragments into plasmid vectors, transformation of cells with recombinant DNA, isolation and analysis of recombinant plasmids, Southern blotting and PCR. Prerequisites: BIOL 210, BIOL 225, BIOL 403. (1-6-3) (C)

BIOL 430
Animal Physiology
Respiration; circulation; energy metabolism; temperature regulation; water and osmotic regulation; digestion and excretion; muscle and movement; nerve excitation; information control and integration; and chemical messengers. Emphasis on general principles with examples drawn from various animal phyla. Prerequisite: BIOL 107 or BIOL 115. (3-0-3)

BIOL 445
Cell Biology
Modern studies of cell structure and function at the cellular, subcellular and molecular levels. Topics include molecular components of cells, membranes, membrane-bound organelles, microtubular and cytoskeletal components, and principles of bioenergetics. Prerequisites: BIOL 107 or BIOL 115 and CHEM 237 or consent of the instructor. (3-0-3)

BIOL 446
Cell Biology Laboratory
A laboratory course in cell biology to be taken concurrently with BIOL 445. (0-6-3) (C)

BIOL 490
Individual Study
Prerequisite: Consent of instructor. (Credit: Variable; maximum three credit hours) (C)

BIOL 491
Biology Research Project
An opportunity for advanced undergraduates to participate in research. A written report covering the procedures, data and conclusion of the problem is required. Prerequisite: Consent of instructor. (Credit: Variable) (C)

BIOL 495
Colloquium
Lectures by prominent scientists. Prerequisites: BIOL 107 and 115, or permission of instructor. This course may not be used to satisfy the natural science general education requirement. (1-0-1)

Graduate Courses
Graduate courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty adviser. See the current IIT Bulletin: Graduate Programs for full descriptions.

BIOL 513
Advanced Biochemistry

BIOL 514
Toxicology

BIOL 515
Molecular Biology

BIOL 519
Biochemistry Laboratory

BIOL 527
Immunology

BIOL 542
Advanced Microbiology Lectures

BIOL 550
Industrial and Computational Biology

BIOL 560
Microbial physiology and Metabolism

BIOL 561
Microbial Genetics and Genetic Engineering

Civil and Architectural Engineering

* May only be taken by architecture students; not for civil and architectural engineering majors.

CAE 100
Introduction to Engineering I
Introduction to the profession; an introduction to engineering graphics as a problem-solving tool. Basic traditional techniques of orthographic projection, multiview sketching, isometric and oblique pictorials, sectioning, auxiliary views, dimensioning, detail drawing, use of ANSI standards; and applications in civil and architectural engineering. (1-2-2)
CAE 101
Introduction to Engineering II
A continuation of CAE 100.
Application of PC-based CAD (computer-aided drawing and design) software to presentation and problem solving in civil and architectural engineering applications. Introduction to basic principles of design. Prerequisite: CAE 100. (0-4-2)

CAE 105
Geodetic Science
Measurement of distances and angles. Theory of errors. Study of leveling traversing topographic mapping, route surveying, earthwork computation, photometry, and boundary surveys. Practice in the use of tapes, levels, transits, total stations and photogrammetric equipment. Corequisite: CAE 100. (2-2-3)

CAE 202
Materials and Strength of Materials

CAE 221
Engineering Geology
Geology and its relationship to civil engineering; minerals; rocks; soil formation; geologic structure; groundwater hydraulics; frost action in soils, landslides, shoreline erosion, bluff instability; earthquakes; airphoto interpretation, soil and rock mechanics in relation to engineering geology; subsurface exploration; dams, reservoirs, tunnels; case-history illustrations. (3-0-3)

CAE 286*
Theory and Concept of Structural Mechanics

CAE 287*
Structures I: Analysis and Behavior
Structural analysis; behavior of beams and frames. Buckling of columns. Stress calculations in trusses, cables, beams and frames. Deflection of trusses and beams. Indeterminate systems; three-moment equations; computer application of structural analysis. Loads on structures; concept of design; definition of ASD and LRFD. Prerequisite: CAE 286. (3-0-3)

CAE 301
Hydraulics and Hydrology

CAE 302
Fluid Mechanics and Hydraulics
Fundamental concepts; fluid statics; properties of fluid in motion; fluid flows through orifices, weirs and venturi meters; laminar and turbulent flow in closed conduits; flow in open channels; turbomachinery; measurement in fluid mechanics and hydraulics. Prerequisite: MATH 252. (3-0-3)

CAE 303
Structural Design I
Design loads; factors of safety; load and resistance factors for steel and timber structures. Experimental and analytical study of steel and timber materials subjected to various states of stress. Failure theories, yield and post-yield criteria are treated. Fatigue and fracture mechanics phenomena are related to design practice. The design of tension members, beams and columns in steel and timber. Prerequisite: MMAE 202. (2-3-3) (D) (C)

CAE 304
Structural Analysis I
The analysis of statically determinate trusses and frames. Determination of internal forces and calculation of deflections. Application of the principle of virtual work and energy methods. Column stability. Prerequisites: MMAE 202, MATH 252. (3-0-3)

CAE 307
Structural Design II
Design loads, factor of safety, load and resistance factors for concrete structures. Properties of concrete-making materials and the proportioning of concrete mixtures. Experimental and analytical study of plain and reinforced concrete subjected to various states of stress. Failure theories and the ultimate strength of plain and reinforced concrete structural components. The design of beams, columns and slabs in reinforced concrete. Prerequisites: MMAE 202, CAE 304. CAE 315 (2-3-3) (D) (C)

CAE 309
Thermodynamics and Heat Transfer

CAE 310
Structural Analysis II
The analysis of statically indeterminate frames. Application of classical methods including superposition, slope deflection and moment distribution. Introduction to the direct stiffness method and computer analysis of structures. Prerequisite: CAE 304. (2-3-3)
CAE 312
Engineering Systems Analysis
Applications of engineering and economic concepts and analysis to civil engineering systems; practical applications of elementary probability and statistics, operations research and economics in civil engineering. Prerequisite: MATH 251. (3-0-3) (C)

CAE 315
Materials of Construction
Physical principles of elastic and plastic deformation of construction. Mechanical testing methods including tensile, compressive, toughness, creep and fatigue. Properties of concrete, wood, iron and steel, and other construction materials. The emphasis is on concepts from solid mechanics which explain the behavior of materials to the extent needed in the design of load-bearing structures. Prerequisite: MMAE 202. (2-3-3) (C)

CAE 323
Soil Mechanics
Physical and mechanical properties of soils; elementary principles of soil identification and testing. Principles of soil permeability and seepage, consolidation, failure theories, earth pressures, and bearing capacity. Laboratory included. Prerequisites: MMAE 202, CAE 301. (2-3-3) (C)

CAE 331
Building Science
Study of the physical phenomena that make climate (rain, snow, humidity, temperature, wind, sun, etc.) influence buildings. The topics include heat transfer methods, solar radiation, vapor in air, air leakage and water condensation, fluids dynamics, and wind movement. Study of indoor thermal environment and thermal comfort of building occupants is offered as well. Prerequisite: PHYS 224. (3-0-3)

CAE 334
Illumination and Acoustics

CAE 351*
Structures II: Steel and Timber Design

CAE 352*
Structures III: Reinforced Concrete and Masonry Design
Concrete as a material, behavior of reinforced concrete. Design of concrete beams, columns, one-way slabs and simple footings. Detail of reinforcement. Deflection and cracking of concrete. Masonry structures, design of masonry load-bearing walls, reinforced and unreinforced masonry members. Prerequisite: CAE 287. (3-0-3)

CAE 401
Building Systems Integration Studio I
Principles and elements of design; synthesis of structural, mechanical, electrical, sanitary and construction, considering interrelationship in performance and economics. Emphasis will be given to system identification, typical usage and manner of integration. Prerequisites: CAE 111, 112, and senior standing. (1-3-2) (D)

CAE 401
Building Systems Integration Studio II
Continuation of CAE 401. An in-depth review of interference design. Design and detailed development of a major architectural project integrating all aspects of architectural engineering and related disciplines in a professional manner and milieu. Prerequisite: CAE 401. (0-6-2) (D)

CAE 408
Bridge and Structural Design
Design of modern bridges, bridge design requirements, LRFD approach, seismic and wind effects, fatigue in bridges, support design. (3-0-3) (D)

CAE 410
Introduction to Wind and Earthquake Engineering

CAE 412
Traffic Engineering Studies and Design
Basic traffic engineering studies including traffic volume, speed, accident and parking studies. Capacity and analysis for various traffic facilities. Design of traffic control devices. Prerequisite: Senior standing or consent of the instructor. (3-0-3) (D)

CAE 415
Pavement Design, Construction and Maintenance
Pavement types, stresses in flexible and rigid pavements, vehicle pavement interaction. Mathematical models for pavement systems, subgrade support, design of flexible and rigid pavements. Construction procedure, drainage considerations, environmental effects. Rehabilitation and maintenance of pavements. Prerequisite: CAE 323. (3-3-4)

CAE 416
Facility Design of Transportation Systems
Design and analysis of facilities of transportation systems. Integration of select transportation components and their interrelationships. Design of specific facilities: guideways, terminals, and other elements for railroads, airports and harbors. Prerequisite: Senior standing or consent of the instructor. (3-0-3) (D)
CAE 417
Railroad Engineering and Design
History of railroad industry. Train operation, train make-up, and handling. Design and analysis of railroad track structure, track irregularities and their representation. Vehicle-track interaction and dynamic problems associated with it. Performance of railway vehicles. Prerequisite: Senior standing or consent of the instructor. (3-0-3) (D) (C)

CAE 419
Transportation Engineering and Design
Highway functions, design controls and criteria, element of design, cross-section elements, local roads and streets, at-grade intersections, grade separation and interchanges, highway capacity analysis, and introduction to pavement management. (3-0-3) (D)

CAE 420
Introduction to Dynamics of Structures
Fundamentals of free, forced and transient vibration of single and multi-degree of freedom structures, including damping of lumped and distributed parameters systems. Time, frequency, and approximate methods of analysis. Application of numerical methods in time and frequency domain. Response spectra, normal modes, coupling and normal coordinates. Prerequisite: CAE 310. (3-0-3)

CAE 421
Risk Assessment Engineering
Description and concept of risk, relationship between the likelihood of loss and the impact of loss, engineering hazards assessment and risk identification and evaluation using fault tree analysis, failure mode and effect analysis, etc., risk analyses applications with practical statistics, etc. (3-0-3)

CAE 422
Sprinklers, Standpipes, Fire Pumps, Special Suppression and Detection Systems
Review and introduction to fluid dynamics applied to sprinklers, standpipes, fire pumps and special suppression systems; hydraulic design criteria and procedures for sprinklers requirements, standpipes, fire pumps, special suppression systems, and detection and alarm systems using nationally recognized design (National Fire Protection Association) standards, water supply requirement systems and distributions. Prerequisite: MMAE 310. (3-0-3)

CAE 424
Introduction to Fire Dynamics
Introduction to fire, physics and chemistry, and mass and heat transfer principles, fire fluid mechanic fundamentals, fundamentals and requirements of the burning of materials (gases, liquids, and solids), fire phenomena in enclosures such as pre-flashover and post-flashover. Prerequisite: MMAE 310, MMAE 322 or consent of the instructor. (3-0-3)

CAE 425
Fire Protection and life Safety in Building Design
Fundamentals of building design for fire and life safety. Emphasis on a systematic design approach. Basic considerations of building codes, fire loading, fire resistance, exit design, protective systems, and other fire protection systems. For architects and engineers not majoring in fire protection and safety engineering. (3-0-3)

CAE 426
Computer Fire Modeling Theory and Applications
Introduction to fire heat-transfer processes and fire testing materials; application of a set of quantitative engineering tools (fire models) to construct a description of conditions that occur or might occur during the course of a fire; life and structural impacts from hostile fires in buildings. Prerequisite: CAE 424 or consent of instructor. (3-0-3)

CAE 430
Probability Concepts in Civil Engineering Design
Introduction to probability, modeling, and identification of nondeterministic problems in civil engineering. Development of stochastic concepts and simulation models and their relevance to design and decision problems in various areas of civil engineering. Prerequisite: MATH 252. (3-0-3) (D)

CAE 431
Steel and Timber Design
Design of steel beams, plate girders, and beam columns. Bolted and welded connections. Design of typical frame systems. Prerequisites: CAE 303, CAE 310, CAE 315 (3-0-3) (D)

CAE 432
Concrete and Foundation Design
Design of reinforced concrete building frames and continuous structures. Design of girders, slabs, columns, foundations and retaining walls. Prerequisites: CAE 307, CAE 310, CAE 315 (3-0-3) (D)

CAE 435
Experimental Analysis of Structures
The analysis of structures (prototypes) with the aid of models constructed from metal, wood, plastics and other materials. Geometrical, mathematical, demonstration, graphical, and direct and indirect models will be treated. Comparisons of experimental results with results from computer models will be made. Similitude and the theory of models will be treated. Individual and group project work will be emphasized. Prerequisites: CAE 304, CAE 310; or CAE 351 or CAE 352. (2-2-3)

CAE 436
Design of Masonry and Timber Structures
Design of unreinforced and reinforced masonry structural elements and structures. Serviceability and ultimate capacity design. Seismic response, resistance and design. Design of wood columns and bending members. Mechanical Fasteners and Connectors. Prerequisites: CAE 310,307 or 352 or consent of the instructor. (3-0-3) (D)

CAE 442
Finite Element Methods in Framed Structures
Basic principles and review of elasticity, energy methods, stiffness method, element stiffness matrix, finite element applications in frames, trusses, curved and non-prismatic and plate structures, convergence of finite element models, practical problems. Prerequisite: CAE 310. (3-0-3)
CAE 457
Geotechnical Foundation Design
Methods of subsurface exploration. Study of types and methods of design and construction of foundations for structures, including single and combined footings, mats, piles, caissons, retaining walls, and underpinning. Drainage and stabilization. Prerequisites: CAE 301, CAE 323. (3-0-3) (D)

CAE 461
Plumbing and Fire Protection Design
Study of plumbing systems and fixtures including wastewater, water supply, and venting systems. Study of fire protection systems for buildings including pipe sizing, pumps, sprinklers, gravity and pressure vessels, and controls. Prerequisite: CAE 302. (3-0-3)

CAE 462
Construction Drawings and Cost Estimating
An introduction to the production of construction documents used in the building industry. A preliminary building design is developed to include detailed materials and construction information. A set of drawings for a small building is completed including floor plans and elevations, site, structure and foundation, wall and roof sections and details, doors and windows, HVAC, plumbing, lighting, electricity, and communication. All drawings are to be developed using CAD software. Study of the types of cost estimation, quantity take-off and the preparation bid for complete building project. Prerequisite: Senior standing. (2-6-4)

CAE 463
Building Enclosure Design
Study of wall, window and roof design. Consideration for the factors that influence the design of building exteriors, including the control of heat flow, air and moisture penetration, building movements and deterioration. Study of the principle of rain screen walls and of energy conserving designs. Analytical techniques and building codes are discussed through case studies and design projects. Prerequisite: CAE 331. (3-0-3)

CAE 464
HVAC Systems Design
Study of the fundamental principles and engineering procedures for the design of heating, ventilating and air conditioning systems; HVAC system characteristics; system and equipment selection; duct design and layout. Attention is given to energy conservation techniques and computer applications. Prerequisites: MMAE 320, CAE 302, CAE 331. (3-0-3)

CAE 465
Building Energy Conservation Technologies
Identification of the optimal energy performance achievable with various types of buildings and service systems. Reduction of infiltration. Control systems and strategies to achieve optimal energy performance. Effective utilization of daylight, heat pumps, passive and active solar heaters, heat storage and heat pipes in new and old buildings. Prerequisite: CAE 464. (3-0-3)

CAE 466
Electric and Communication Systems Design
Study of the analysis and design of electrical systems in buildings utilizing the National Electrical Code. The topics include basic circuits, AC and DC single phase, three-phase power, transients, capacitance and inductance, branch circuits, panelboards, motors, system sizing, and electrical distribution in buildings. Study of the design and specification of communication systems in buildings, including fire alarm, security, sound and telephone. Prerequisite: ECE 383. (3-0-3)

CAE 467
Lighting Systems Design
An intensive study of the calculation techniques and qualitative aspects of good luminous design. Topics covered include photometric quantities and color theory, visual perception, standards, daylight and artificial illumination systems, radiative transfer, fixture and lamp characteristics, control devices and energy conservation techniques. Design problems, field measurements, computer and other models will be used to explore the major topics. Prerequisite: CAE 334. (3-0-3)

CAE 470
Construction Methods and Cost Estimating
The role of estimating in construction contract administration. Types of estimates. Unit costs and production rates; job costs. Preparing bid for complete building project using manual methods and the CSI format; checking quantity take-off and cost estimating in selected divisions using a computer package. Prerequisite: senior standing. (2-3-3) (D)

CAE 471
Construction Planning and Scheduling

CAE 472
Construction Site Operation
Construction site layout and mobilization. Liabilities of the parties. Methods of construction. Concrete form design and fabrication. Scaffolding, temporary facilities, and equipment. Safety on sites. Introduction to construction productivity. Prerequisite: Senior standing. (3-0-3)

CAE 473
Construction Project Administration
Characteristics of the construction industry. Project delivery systems. Duties and liabilities of the parties at the pre-contract stage. Bidding, Contract administration including duties and liabilities of the parties regarding payments, retainage, substantial and final completion, scheduling and time extensions, change orders, changed conditions, suspension of work, contract termination, and resolution of disputes. Contract bonds. Managing the construction company. Labor law and labor relations. Prerequisite: Senior standing. (3-0-3)
CAE 482
Hydraulic Design of Open Channel Systems
Uniform flow design; backwater profiles in natural streams; gradually varied flow practical problems; spatially varied flow; flow through nonprismatic and nonlinear channels; gradually varied unsteady flow; rapidly varied unsteady flow; flood routing; numerical solutions of open channels. Prerequisite: CAE 301 or consent of instructor. (3-0-3) (D)

CAE 483, 484
Environmental Systems for Buildings I, II
Introduction of the operation and design of building systems for climate control, water and drainage, fire safety, electrical supply, illumination, transportation, and noise control. (3-0-3); (3-0-3)

CAE 486
Soil and Site Improvement
Theory of water flow through porous media. Site improvement techniques including grading and drainage, dewatering, reinforcement, and slurry trenches. Soil improvement techniques including replacement, in situ compaction, preloading and subsurface drainage, grouting, freezing, prewetting, and heating. Prerequisites: CAE 323 or consent of instructor. (3-0-3)

CAE 491
Undergraduate Research
Special research problems in civil engineering under individual supervision of instructor. Seminar presentation is required. Prerequisite: Senior standing, minimum GPA of 3.0, and consent of instructor. (Credit: Variable; maximum 4 credit hours)

CAE 497
Special Project
Special design project under individual supervision of instructor. Prerequisite: Senior standing, minimum GPA of 3.0, and consent of instructor. (Credit: Variable; maximum 4 credit hours)

Chemical Engineering
CHE 100
Introduction to the Profession I
Introduction to chemical engineering and engineering productivity software. Communication skills development, technical reporting and presentation, engineering ethics, and a variety of topics are discussed. (1-2-2) (C)

CHE 101
Introduction to the Profession II
A continuation of CHE 100. Advanced engineering applications of productivity software. Engineering graphics and technical flowsheeting. Team project research and project management skills. Internet publishing. Prerequisite: CHE 100. (0-4-2) (C)

CHE 202
Material and Energy Balances
Material and energy balances for engineering systems subjected to chemical and physical transformations. Calculations on industrial processes. Prerequisites: CS 105, MATH 152, and one semester of chemistry. (2-2-3) (C)

CHE 301
Fluid Mechanics and Heat-Transfer Operations
Flow of fluids and heat transfer. Fundamentals of fluid flow and heat transfer design equations as applied to selected unit operations. Prerequisites: CHE 202, MATH 252. Corequisites: CHEM 343, MATH 251. (3-0-3)

CHE 302
Mass-Transfer Operations
Mass transfer in stagewise and continuous contacting equipment. Mass-transfer design equations as applied to selected unit operations. Unsteady state operations in mass-transfer equipment. Prerequisite: CHE 301. (2-2-3)

CHE 317
Chemical Engineering Laboratory I
Laboratory work in the unit operations of chemical engineering, fluid flow, heat transfer and other selected topics. Prerequisite: CHE 301. (1-3-2) (C)

CHE 351
Chemical Engineering Thermodynamics
Laws of thermodynamics and their application to chemical engineering operations. Prerequisite: CHEM 343. (3-0-3)

CHE 402
Introduction to Microelectronics Fabrication Technology
Fundamentals of integrated circuit technology. Epitaxy and doping of epitaxial layers. Film deposition techniques. Bipolar and MOS integrated circuit devices. Integrated and hybrid circuit fabrication. (3-0-3)

CHE 406
Transport Phenomena
The equations of change in different coordinate systems (mass, momentum, and energy transport). Velocity distribution in laminar and turbulent flow. Formulation and analytical solutions to the problems of viscous flow, molecular diffusion, heat conduction and convection. Prerequisites: CHE 301, CHE 302, MATH 252. (3-0-3)

CHE 411
Introduction to Bioengineering
Transport phenomenon and reaction kinetics. Application of engineering principles to biochemical and biomedical systems. Biochemical topics include: microbial pathways, biological systems, energetics and control systems, enzyme and macrobiol kinetics, and the design and analysis of biological reactors. Biomedical topics include: flow properties of blood, transport in the human cardiovascular-
lar system, and the analysis and design of organ functions including the kidney and lung. Prerequisites: CHE 301, CHE 302. Corequisite: CHE 423. (3-0-3)

CHE 418
Chemical Engineering Laboratory II
Laboratory work in distillation, humidification, drying, gas absorption, filtration and other areas. Prerequisites: CHE 302, CHE 317. Corequisite: CHEM 247. (1-3-2) (C)

CHE 423
Chemical Reaction Engineering
Introduction to the fundamentals of chemical kinetics. The design, comparison and economic evaluation of chemical reactors. Emphasis on homogeneous systems. Prerequisites: CHE 302, CHE 351, CHE 433. (2-2-3)

CHE 426
Statistical Tools for Engineers
Descriptive statistics and graphs, probability distributions, random sampling, independence, significance tests, design of experiments, regression, time-series analysis, statistical process control, and introduction to multivariate analysis. Prerequisite: Junior standing. (3-0-3)

CHE 430
Petrochemical Process Operations and Design
Chemical and engineering aspects of current petrochemical and petroleum refining processes will be emphasized, including chemical conversions (catalytic and thermal), physical separations, and evaluation of alternatives. Design and simulation of refinery separation systems with emphasis on distillation columns. Prerequisite: CHE 494. (3-0-3)

CHE 431
Artificial Intelligence Applications in Engineering
Knowledge-based system (KBS) architecture, knowledge representation, inferencing strategies. Real-time KBS. Commercial KBS shells. Neural networks, backpropagation, radial basis functions, recurrent neural networks. Applications in product design, process modeling, diagnosis, and control. Prerequisite: Consent of the instructor. (3-0-3)

CHE 433
Process Modeling and System Theory

CHE 435
Process Control
Dynamic process models, stability assessment, feedback and feedforward control strategies, design and tuning of closed-loop controllers, time domain and frequency domain design and performance assessment methods. Multivariable systems, interaction, multi-loop control. Software for process simulation and controller design. Prerequisite: CHE 302, CHE 433. (2-2-3)

CHE 437
Discrete Time Systems and Computer Control
Sampling of continuous-time signals, Z-transforms, modeling, digital controller design using state-space and pole-placement design methods, adaptive control and self-tuning regulators. Emphasis on chemical process systems and applications. Prerequisite: CHE 433. (3-0-3)

CHE 439
Numerical and Data Analysis
Utilization of numerical methods to find solutions to a variety of chemical engineering problems. Emphasis placed on problem formulation, development of computer code, and interpretation of results. Techniques covered include: systems of algebraic equations, linear regression, and statistics. Numerical differentiation and integration, solution of ordinary and partial differential equations. Prerequisites: CHE 301, CHE 302, MATH 252. (3-0-3)

CHE 450
Principles of Polymer Science and Engineering
This introductory course deals with the physics, chemistry and engineering of polymer systems. Classical concepts and theories as well as recent developments are addressed. Topics to be discussed include: characterization, structure and properties, thermodynamics, polymerization reaction engineering, mechanical behavior, rheology, and processing. (3-0-3)

CHE 451
Chemical Process Thermodynamics
Second-law analysis of cooling, separation, combustion and other chemical processes. Chemical reaction equilibrium and processing applications. Prerequisite: CHE 351. (2-0-2)

CHE 455
Polymer Processing
Considerations of transport processes in the polymer industry. Analysis of heat, mass and momentum transfer in molten polymers and polymer solutions. The polymer flow processes to be discussed will include: extrusion, calendering, fiber spinning, injection molding, mixing and polymerization reaction. Prerequisites: CHE 301, CHE 302. (3-0-3)

CHE 465
Electrochemical Energy Conversion
Thermodynamics, kinetic and mass-transfer fundamentals of electrochemical devices. Potential and potential measurement. Batteries and fuel cells. Fundamentals of corrosion and corrosion prevention. Prerequisites: CHEM 244, CHE 302, or comparable mass-transfer course. (3-0-3)

CHE 475
Food Engineering I
Fundamentals of food engineering. Theory and practice in food processing operations including material and energy balances, flow of fluid foods, heat transfer, thermal process evaluation, and evaporation. Problem-solving and calculation sessions. (3-0-3)
CHE 476
Food Engineering II
Companion course to CHE 475 and normally follows it. Covers freezing and thawing, dehydration (including freeze-drying), distillation and extraction. (3-0-3)

CHE 481
Flow-Through Porous Media and Fundamentals of Reservoir Engineering

CHE 482
LNG Fundamentals
Properties of liquid and gas mixtures at low temperatures. Vapor liquid equilibria. Thermodynamic analysis of natural gas liquefaction processes. Storage and transportation of LNG. Prerequisite: CHE 351 or MAE 205. (3-0-3)

CHE 483
Synthetic Energy
Introduction to synthetic energy processes. Analysis, design, and operation features of synthetic energy conversion processes. Fluidized beds, packed beds and dilute gas solids systems. The principles of low, medium and high-BTU coal gasification and waste-to-energy conversion processes. Prerequisite: CHE 351 or MAE 205. (3-0-3)

CHE 486
Applied Particulate Technology
Applications of particulate technology to industrial processes: sampling, collection, characterization, segregation, flow, handling, storage, agglomeration, mixing, pulverization, attrition and transport of particles. Application of powder technology to material processing and environmental engineering. (3-0-3)

CHE 489
Fluidization
Regimes of fluidized beds, rheology behavior of fluidized beds, particle classification, properties of the bubble, emulsion, elutriation and jet. Fluid mechanic theory and heat and mass transfer in fluidized beds. Design aspects of fluidized beds and pneumatic conveying. Industrial applications of fluidized beds (catalytic reactors, drying, coal conversion, waste treatment). Prerequisite: CHE 302. (3-0-3)

CHE 492
Senior Problems
A senior research course that allows the student to pursue a largely independent study and research program in areas of current staff interest. Prerequisites: Senior standing and a GPA in major courses of 3.0 or better. (Credit: Variable; maximum 3 credit hours)

CHE 494
Chemical Process Design
Introduction to design techniques and economic aspects of chemical processes. The technical and economic aspects of equipment selection and design, and alternative methods of operation. Prerequisite: CHE 302, CHE 351, CHE 433. (2-2-3) (C)

IPRO 496
Design IPRO
Group project in process design. Integration of technical, safety, environmental, economic and societal issues in process development and design. Final part of the IPRO project package. Project teams consist of chemical and environmental engineering students and students from other disciplines and professions. Students from other academic units should register for designated section of IPRO 297/397/497 (3 credits) and their contribution to the project tasks will be defined accordingly. Only CHE students should register for this course. Prerequisites: CHE 494, IPRO 296. Co-requisites: CHE 423, CHE 435. (1-2-2) (C)

Graduate Courses
Graduate courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty adviser. See the current IIT Bulletin: Graduate Programs for course descriptions.

CHE 501
Transport Phenomena

CHE 503
Chemical Engineering Thermodynamics

CHE 507
Computer-Aided Design

CHE 508
Process Design Optimization

CHE 510
Transport phenomena in living Systems

CHE 512
Heat Transfer

CHE 518
Principles of Diffusional Operations

CHE 524
Industrial Catalysts

CHE 525
Chemical Reaction Engineering

CHE 528
Analysis and Simulation of Chemical Processes

CHE 530
Advanced Process Control

CHE 532
Process Modeling

CHE 533
Statistical Analysis

CHE 535
Applications of Mathematics to Chemical Engineering

CHE 536
Computational Techniques in Engineering

CHE 538
Polymerization Reaction Engineering

CHE 542
Fluidization and Gas-Solids Flow Systems
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 543</td>
<td>Energy, Environment and Economics</td>
</tr>
<tr>
<td>CHE 555</td>
<td>Polymer Processing</td>
</tr>
<tr>
<td>CHE 560</td>
<td>Statistical Quality and Process Control</td>
</tr>
<tr>
<td>CHE 565</td>
<td>Electrochemical Engineering</td>
</tr>
<tr>
<td>CHE 566</td>
<td>Fundamentals of Electro-chemistry</td>
</tr>
<tr>
<td>CHE 571</td>
<td>Food Process Engineering</td>
</tr>
<tr>
<td>CHE 572</td>
<td>Advanced Food Process Engineering</td>
</tr>
<tr>
<td>CHE 573</td>
<td>Bioseparations</td>
</tr>
<tr>
<td>CHE 575</td>
<td>Polymer Rheology</td>
</tr>
<tr>
<td>CHE 576</td>
<td>Industrial Chemistry</td>
</tr>
<tr>
<td>CHE 577</td>
<td>Biochemical Engineering</td>
</tr>
<tr>
<td>CHE 579</td>
<td>Enzyme Reactor Engineering</td>
</tr>
<tr>
<td>CHE 581</td>
<td>Processing and Applications of Polymer Composite Materials</td>
</tr>
<tr>
<td>CHE 582</td>
<td>Interfacial and Colloidal phenomena</td>
</tr>
<tr>
<td>CHE 583</td>
<td>Pharmaceutical Engineering</td>
</tr>
<tr>
<td>CHE 585</td>
<td>Drug Delivery</td>
</tr>
<tr>
<td>CHE 586</td>
<td>Particulate Technology</td>
</tr>
<tr>
<td>CHE 587</td>
<td>Particle Processing and Characterization</td>
</tr>
<tr>
<td>CHEM 100</td>
<td>Introduction to the Profession</td>
</tr>
<tr>
<td>CHEM 124</td>
<td>Principles of Chemistry I</td>
</tr>
<tr>
<td>CHEM 125</td>
<td>Principles of Chemistry II</td>
</tr>
<tr>
<td>CHEM 126</td>
<td>Principles of Chemistry II</td>
</tr>
<tr>
<td>CHEM 237</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>CHEM 239</td>
<td>Organic Chemistry II</td>
</tr>
</tbody>
</table>

CHEM 100
Introduction to the chemical sciences, scientific method, computing tools, and interrelations of chemical sciences with biology, physics and other professions. (2-0-2) (C)

CHEM 124
Principles of Chemistry I
Foundations of chemistry, atoms and molecules, stoichiometry of chemical reactions, thermochemistry, properties of gases, states of matter, chemical solutions, and kinetics. Molecular basis for chemical reactivity; atomic structure, periodicity, chemical bonding. (3-3-4) (C)

CHEM 125
Principles of Chemistry II
Chemical equilibria, the chemistry of acids and bases, solubility, and precipitation reactions. Introduction to thermodynamics and electrochemistry. Chemistry of selected elements and their compounds. Prerequisite: CHEM 124. (3-3-4) (C)

CHEM 126
Principles of Chemistry II
Same as CHEM 125 except without the laboratory. Prerequisite: CHEM 124. (3-0-3)

CHEM 237
Organic Chemistry I
The constitution and properties of the different classes of organic compounds, with considerable attention to stereochemistry, reaction mechanisms, synthetic organic and bio-organic chemistry, and spectroscopy. The laboratory work involves an introduction to the major synthetic and analytical techniques of organic chemistry including the preparation of representative organic compounds and the isolation of compounds from natural sources. Prerequisite: CHEM 125 or consent of instructor. (3-4-4) (C)

CHEM 239
Organic Chemistry II
Sequel to Organic Chemistry I. Constitution and properties of organic compounds at a fundamental level. Introduction to biological materials and synthetic polymers. Prerequisite: CHEM 237. (3-0-3)

CHEM 240
Organic Chemistry Laboratory
Laboratory part of CHEM 239. Techniques for advanced organic preparations. Identification and characterization of organic compounds, including modern instrumental methods. Prerequisite or corequisite: CHEM 239. (1-4-2) (C)

CHEM 247
Analytical Chemistry
Introduction to the theory and applications of analytical chemistry. Laboratory emphasis on obtaining and interpreting quantitative data. Statistical data analysis, equilibrium expressions, pH, volumetric and gravimetric analysis, fundamentals of spectroscopy, fundamentals of electrochemistry, and analytical separations. Laboratory experiments include acid-base behavior, potentiometry with ion-specific electrodes, spectroscopy (IN-visible and atomic absorption), and chromatography (ion-exchange, high pressure liquid, and gas-liquid). Prerequisite: CHEM 125 or consent of instructor. (2-4-3) (C)

CHEM 321
Instrumental Analysis
Theory and application of modern instruments in chemical procedures. Standard spectroscopic methods including Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and ultraviolet spectroscopy. Separation techniques using high pressure liquid chromatography and gas chromatography. Other topics relevant to advanced chemical instrumentation will also be covered. Prerequisites: CHEM 247, CHEM 344. Prerequisite or corequisite: PHYS 223. (2-6-4) (C)

CHEM 334
Spectroscopic Methods in Identification and Analysis
Characterization and analysis by mass, vibrational, nuclear magnetic resonance, and electronic spectroscopy. Structure-spectra correlations applied to organic and inorganic compounds with examples drawn from diverse
areas, e.g., pollutants, toxic materials, polymers, etc. Prerequisites: CHEM 239, CHEM 247. (2-0-2)

CHEM 335
Spectroscopic and Separation Techniques
Characterization of prepared or separated organic compounds by chromatographic, chemical, and spectroscopic methods. Prerequisites: CHEM 240, CHEM 247. Corequisite: CHEM 334. (0-6-2) (C)

CHEM 343
Physical Chemistry I
Equations of state; kinetic molecular theory; temperature-dependent enthalpies and heat capacities of chemical compounds and of chemical reactions; entropy and the Gibbs free energy; chemical equilibrium; phases with variable composition; solutions of charged particles; surface phenomena. Prerequisites: CHEM 247, PHYS 223, MATH 251. (3-0-3)

CHEM 344
Physical Chemistry II
Quantum theory, molecular structure and spectroscopy, chemical equilibrium constants from statistical mechanics, phenomenological and mechanistic chemical reaction kinetics, transport phenomena from molecular perspective. The laboratory will include experiments dealing with gases, thermochemistry, liquid solutions, phase equilibria, electrochemistry, chemical kinetics, spectra, molecular structure and treatment of data. Prerequisite: CHEM 343. (CHEM 247, Analytical Chemistry is recommended.) (3-4-4) (C)

CHEM 415
Inorganic Chemistry
In-depth introduction to the vast subfield of the discipline dealing with all elements in the periodic table. Presents balanced blend of facts and theories in modern inorganic chemistry. Emphasis is on bonding, electronic, magnetic and structural features exhibited by inorganic and organometallic compounds and their reactivities. Modern concepts including symmetry and group theory and their relevance in solving chemical problems. Bioinorganic chemistry, and “high tech” inorganic materials and solids are introduced. Prerequisite: CHEM 344. (3-0-3)

CHEM 416
Advanced Chemistry Laboratory
An advanced laboratory with emphasis on synthesis and characterization of inorganic and organometallic compounds. Prerequisites: CHEM 240, CHEM 321. (1-7-3) (C)

CHEM 435
Introduction to Polymers
An introduction to polymer science with major emphasis on background, nomenclature and synthesis. Selected processing and characterization techniques and applications to day-to-day encounters with modern intelligent polymeric materials are introduced. Prerequisites: CHEM 239, CHEM 344 or consent of instructor. (3-0-3)

CHEM 450
Introduction to Research
Required for chemistry majors. Designed to give research experience in a faculty research laboratory. Prerequisites: CHEM 334, CHEM 335. (0-8-3) (C)

CHEM 451
Modern Techniques in Chemical Literature
A guide to the use of traditional and automated methods for the storage and retrieval of chemical information. Prerequisites: CHEM 239, CHEM 343. (2-0-2)

CHEM 454
Computer Applications in Chemistry
A numerical methods and computer applications course for chemists; emphasis on software rather than hardware; results of numerical analysis and linear algebra presented and applied to solution of chemical problems. Prerequisites: CS 105, MATH 152, CHEM 344. (3-0-3)

CHEM 455
Advanced Organic Chemistry
A survey of organic name reactions and modern reagents for organic synthesis with an emphasis on their utility in multistep synthesis. Prerequisites: CHEM 239, CHEM 344. (3-0-3)

CHEM 487
Senior Thesis in Chemistry
Original work carried on by the student under the guidance of a faculty member. A careful search of the literature is required before the study is begun, and continued reference to the chemical literature is expected as the work progresses. A written report is required. (0-12-4) (C)

CHEM 485
Colloquium
Lectures by prominent scientists. Prerequisites: CHEM 125 and 126, or permission of instructor. This course may not be used to satisfy the natural science general education requirement. (1-0-1)

CHEM 497
Special Projects
For juniors and seniors. (Credit: Variable) (C)

Graduate Courses
Graduate courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty adviser. See the current IIT Bulletin: Graduate Programs for full descriptions.

CHEM 500
Advanced Analytical Chemistry
CHEM 501
Liquid Chromatography
CHEM 502
Gas Chromatography, Gas Chromatography-Mass Spectrometry
CHEM 503
Chromatography Techniques
CHEM 504
Chemometrics
CHEM 505
Spectroscopic Methods
CHEM 506
Sampling and Sample Preparation
CHEM 508
Analytical Methods Development

CHEM 509
Spectral and physical Methods

CHEM 510
Electronics and Interfacing

CHEM 518
Electrochemical Methods

CHEM 520
Advanced Inorganic Chemistry

CHEM 521
Structural Inorganic and Solid State Chemistry

CHEM 522
Efficient Chemical and Materials Synthesis

CHEM 524
Intellectual Property Management

CHEM 530
Organic Reaction Mechanisms

CHEM 531
Tactics of Organic Synthesis

CHEM 535
Advanced Polymer Chemistry

CHEM 537
polymer Chemistry Laboratory

CHEM 538
Physical Biochemistry

CHEM 539
Introduction to pharmaceutical Chemistry

CHEM 542
polymer Characterization and Analysis

CHEM 550
Chemical Bonding

CHEM 552
Chemical Kinetics

CHEM 553
Advanced Chemical Thermodynamics

Computer Engineering

CPE 100
Introduction to the Profession I
Introduces the student to the scope of the engineering profession and its role in society and develops a sense of professionalism in the student. Provides an overview of computer engineering through a series of hands-on projects and computer exercises. Develops professional communication and teamwork skills. (1-2-2) (C)

CPE 101
Introduction to the Profession II
Continuation of CPE 100, primarily through short projects. Prerequisite: CPE 100. (0-4-2) (C)

City and Regional Planning

CRP 201
The Dwelling
Programming and planning for human habitation in dwellings and neighborhoods. Housing as a response to human needs. Environmental impacts and their amelioration. Building types and their impacts on programmatic needs. Examples of various housing schemes in and around Chicago. (1-4-3)

CRP 203
Housing and Housing Types
The planning of rooms, houses, and groups of houses. Analysis of climatological, physical, psychological and social needs and their influence on the planning of housing. Government regulations, costs and financing, and their impact on housing. Includes single-family detached, row housing, walk ups, and low-rise construction. Limited work in other buildings. Lectures, seminars and drawing problems. Prerequisite: Drawing ability. (1-4-3)

CRP 204
Housing and Community Developments
Neighborhood and community theory and application. Housing, parks, shopping, work places and their relationships in size and location. Related infrastructure, including traffic, potable water, storm drainage, sewerage, natural gas, and electric. Prerequisite: CRP 203. (0-6-3)

CRP 307
Elements of City Planning
Theory of city planning and its application to new construction and to reconstruction of existing cities. The disposition of the various functions and activities of a city into a mutually supportive system. The acquisition and analysis of physical, social and economic information. City prototypes and their application to specific locations. Government codes and regulations and their use and effect on cities. Prerequisite: CRP 203, CRP 204, or consent of instructor. (1-4-3)

CRP 308
City Planning and Replanning
The application of city planning theory to a specific area. Planning for the reuse of existing cities and for new construction. A project that applies various planning principles to an actual situation is the primary effort. Prerequisite: CRP 307. (1-4-3)

CRP 407
Infrastructure Planning
Planning for and the application of various utility systems. Current practice and recent developments in methods and materials. Political and social issues involved in planning. Finance and operating costs and procedures. Focus on water supply, sewerage, storm drainage and transportation systems. (3-0-3)

CRP 408
City Planning Practice
Program and procedure. City planning techniques and methods as developed in planning commissions. Technical experience as a procedural guide. General background knowledge of the scope and types of office techniques and tools used in the preparation of a city plan. (3-0-3)

CRP 425, 426
History and Architecture of Cities I, II
Selected topics in the history and development of human settlements. Examination of the forces affecting
city development in history. These courses are taught as seminars and meet for one three-hour period per week. (3-0-3); (3-0-3)

CRP 441
The Airport: An Introduction
Review of aircraft types and their evolution and use; airport development and planning. General aviation, regional, metropolitan and major hub airport requirements; anatomy of the airport and requirements. Readings, written assignments, airport visits, and reports. Future airport/spaceport needs are analyzed. (3-0-3)

CRP 465
The Ecological Basis of Planning
The role of natural systems in meeting human needs. Natural systems. Climate, geology, land forms, soils, vegetation, and animal populations as the bases of agricultural and industrial technologies. Competing demands on air, water and land. Limiting factors. (3-0-3)

CRP 470
Urban Form in History: Pre-20th Century
This course studies historical and modern urban form in relation to contemporary urban problems. In the first semester, historical examples of high-density urban form and housing are selected and analyzed. Many examples of innovative urbanism and housing have features that are relevant to modern problems. They can be found in the different historical periods of major world regions, cultures and climates. Each student will take two or more examples and will prepare a report with text, diagrams and data. Prerequisite: Graduate or upper level undergraduate standing. (2-8-6)

CRP 471
Urban Form in History: 20th Century Low-Rise Urbanism
The second semester of this course examines modern innovative examples of high-density, low-rise urban form, housing and neighborhood design. The redevelopment of urban residential areas and the rapid expansion of suburbs, low-density areas with the problems of environment, traffic, pollution, land-use, etc., logically call for an improved urbanism. Modern low-rise, high-density examples, both built and theoretical, will be selected and analyzed. Each student will take two or more projects and prepare a report with diagrams, data and descriptive text. Prerequisite: CRP 470. (2-2-3) (C)

CRP 472
Low-Rise Urbanism: House Components, Form/Cluster Design
As low-density suburbs expand, so do the problems of environmental quality, land use, traffic, pollution, etc. The alternative model of high-density, low-rise, energy-efficient urbanism is the subject of this course. The first semester deals with the components of the house and their assembly into unit form, the guiding principles of unit aggregation, solar orientation, gardens, access and garaging. Each student will prepare designs for unit types and diagrammatic clustering. Prerequisite: Graduate or upper level undergraduate standing. (2-8-6)

CRP 473
Low-Rise Urbanism: Residential High-Density Design
The second semester of this course focuses on the preparation of detailed designs for houses and neighborhood clustering based on the high-density, low-rise concept. Basic determinants are passive solar design, type variety, minimum infrastructure and access, gardens, privacy, integrated garaging. Each student will develop and present one design project within an overall program of types. Prerequisite: CRP 472. (2-8-6)

CRP 490
Directed Reading
Prerequisite: Consent of the instructor and approval of the dean. (Credit: Variable; maximum three credit hours)

CRP 497
Special Problems
Independent study of projects and problems. Prerequisites: Students must be advised and have consent of the instructor and approval of the dean. (Credits: Variable)

Communication

COM 101
Writing in the University
A study of the use of writing, reading and discussion as a means of discovering, questioning, and analyzing ideas, with an emphasis on audience, context and the use of revision. Equivalent to ENGL 101. (3-0-3) (C) This course satisfies IIT's Basic Writing Proficiency Requirement (page 30). It does not satisfy a general education requirement in the humanities and social or behavioral sciences.

COM 111
Writing in the University for Non-Native Students
Equivalent to COM 101, ENGL 101 and ENGL 111. Designed to deal with the special writing problems of those students whose native language is not English. (3-0-3) (C) This course satisfies IIT's Basic Writing Proficiency Requirement (page 30). It does not satisfy a general education requirement in the humanities and social or behavioral sciences.

COM 301
Introduction to Linguistics
The objective analysis of language structure and structural hierarchies; a survey of the basic concepts of linguistics; the phoneme, the morpheme, language change over time and space. Equivalent to ENGL 301. Prerequisite: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

COM 305
American English: History and Dialects
Beginning with a survey of the development of the English language and its place in the world's languages, the course examines the structure of contemporary standard American English from a linguistic perspective and develops the concepts and vocabulary briefly to examine existing geographic and socio-economic variation. Equivalent to ENGL 305. Prerequisite: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)
COM 307
The Self in Language
Explores the constructed nature of “the self” in literature and non-fiction prose. Special focus on the role of language in determining one’s identity. Equivalent to ENGL 307. Prerequisite: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

COM 334
Literature of Modern Science
A study of the literature of science from the Renaissance to modern times. Prerequisite: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. Equivalent to ENGL 334. (3-0-3) (H) (C)

COM 401
Advanced Composition and Prose Analysis
Critical analysis of various types of prose, with stress on the art as well as the craft of writing. The student is required to write several critical papers. Equivalent to ENGL 401. Prerequisite: A 100-level humanities course and junior standing. (3-0-3) (C)

COM 421
Technical Writing
Principles and practice in the communication of technical materials. Students work on the design, writing and revising of reports, articles, manuals, procedures and proposals, including the use of graphics. Works by modern writers are analyzed. Equivalent to ENGL 421. Prerequisite: A 100-level humanities course and junior standing. Credit not granted for both COM 421 and MT 301. (3-0-3) (C)

COM 423
Writing in the Workplace
A study of communications relating to entrepreneurial and corporate structures. This course will help students develop business communication skills, including the ability to analyze situations, determine appropriate communications forms, write and revise business-related documents, and give oral presentations. Equivalent to ENGL 423. Prerequisite: A 100-level humanities course and junior standing. (3-0-3) (C)

COM 424
Document Design
Theory and practice of designing scientific, technical and business documents whose primary aim is usability. Focus on overall organization, page design, visuals and typography. Emphasis on print media such as brochures, reports and user manuals, but with attention to parallels in screen-based media (Web, CD-ROM). (3-0-3) (C)

COM 425
Editing
Principles and strategies for revising technical and scientific works for usability, clarity, consistency and reliability. Examination of professional standards and practices for text, tables, graphics and documents, but with emphasis on cohesion (signals of the line of thought), style and usage. (3-0-3) (C)

COM 428
Verbal and Visual Communication
Introduces students to the issues, strategies and ethics of technical and professional presentations, and provides students with opportunities to engage in public address, video presentations and conferencing, and group presentations. Analysis of audience types and presentation situations, group dynamics, persuasive theories, language and mass media. Equivalent to ENGL 428. Prerequisite: A 100-level humanities course and junior standing. (3-0-3) (C)

COM 430
Introduction to Web Design and Management
Presupposing only that students know how to use a web browser, this course teaches beginning HTML, basic page layout and design principles, basic multimedia, and the structure of websites, and also introduces students to WYSIWYG web page generation software and FTP software. (3-0-3)

COM 431
Intermediate Web Design and Management
A continuation of COM 430, this course goes more deeply into HTML, multimedia, and some of the advanced features of WYSIWYG editors. Prerequisite: COM 430 or permission of instructor. (3-0-3)

COM 432
Advanced Web Design and Management
A continuation of COM 430 and 431, this course covers the most current web technologies. Prerequisite: COM 431 or permission of instructor. (3-0-3)

COM 435
Intercultural Communication
An introduction to the problems of communication across cultures, with emphasis on the interplay of American civilization with those of other cultural areas. Equivalent to ENGL 435. Prerequisite: A 100-level humanities course and junior standing. (3-0-3) (H) (C)

COM 491
Independent Reading and Research
For advanced students. Equivalent to ENGL 491. Prerequisite: Consent of department. (Credit: Variable) (H) (C)

COM 497
Special Project
Equivalent to ENGL 497. (Credit: Variable)

Computer Science

CS 100
Introduction to the Profession I
An introduction to science and engineering as a profession. Examines the problem-solving process used in engineering and science. Emphasizes the interdisciplinary and international nature of problem-solving and the need to evaluate solutions in terms of a variety of constraints: computational, financial and social. (1-2-2) (C)
CS 101
Introduction to the Profession II
An introduction to contemporary areas of research and practice in computer science. Examines the context in which projects evolve, the problems confronted, how theory becomes practice in their solution, and the role of computer scientists in research and industry. Prerequisite: CS 100 or equivalent. (0-4-2) (C)

CS 105
Introduction to Computer Programming I
Introduces the use of a high-level programming language (C/C++) as a problem-solving tool, including basic data structures and algorithms, structured programming techniques, and software documentation. Designed for students who have had little or no prior experience with computer programming. (2-1-2)

CS 106
Introduction to Computer Programming II
Continuation of CS 105. Introduces more advanced elements of C++ programming, including pointers, recursion, classes and object-oriented programming techniques. Prerequisite: CS 105 or consent of instructor. (2-1-2)

CS 200
Introduction to C++ Programming
Problem-solving and program design using C++. Introduces a variety of programming techniques, algorithms and basic data structures, including an introduction to object-oriented programming. Prerequisite: Experience using another programming language (Pascal, BASIC, etc.). (2-2-3)

CS 330
Discrete Structures
Introduction to the use of formal mathematical structures to represent problems and computational processes. Topics covered include Boolean algebra, first-order logic, recursive structures, graphs and abstract language models. Prerequisite: CS 106 or CS 200. (3-0-3)

CS 331
Data Structures and Algorithms
Implementation and application of the essential data structures used in computer science. Analysis of basic sorting and searching algorithms and their relationship to these data structures. Particular emphasis is given to the use of object-oriented design and data abstraction in the creation and application of data structures. Prerequisite: CS 106 or CS 200. (2-2-3)

CS 350
Computer Organization and Assembly Language Programming
Introduction to the internal architecture of computer systems, including micro-, mini- and mainframe computer architectures. Focuses on the relationship among a computer’s hardware, its native instruction set, and the implementation of high-level languages on that machine. Uses a set of assembly language programming exercises to explore and analyze a microcomputer architecture. Prerequisite: CS 106 or CS 200. (2-2-3) (C)

CS 351
Systems Programming
Examines the components of sophisticated multilayer software systems, including device drivers, systems software, applications interfaces, and user interfaces. Explores the design and development of interrupt-driven and event-driven software. Prerequisites: CS 331, CS 350. (2-2-3)

CS 397
Special Projects
Prerequisite: Written consent of instructor. (Credit: Variable)

CS 411
Computer Graphics

CS 425
Database Organization
Overview of database architectures, including the Relational, Hierarchical, Network, and Object Models. Database interfaces, including the SQL query language. Database design using the Entity-Relationship Model. Issues such as security, integrity and query optimization. Prerequisite: CS 106 or CS 200 (3-0-3) (T) (C)

CS 426
Introduction to Databases II
Investigation of architectural strategies for deploying database applications. Continuation of topic covered in CS 425, including a review of the relational database architecture and the SQL query language. Emphasis will be placed on active, object/relational and object-oriented database architectures. Develop familiarity with modeling, design and implementation techniques used in the construction of database applications. Prerequisite: CS 425 or database experience.

CS 430
Introduction to Algorithms
Introduction to the design, behavior and analysis of computer algorithms. Searching, sorting and combinatorial algorithms are emphasized. Worst case and average bounds on time and space usage. Prerequisites: CS 330, CS 331. (3-0-3) (T)

CS 440
Programming Languages and Translators
Study of commonly used computer programming languages with an emphasis on precision of definition and facility in use. Scanning, parsing and introduction to compiler design. Use of compiler generating tools. Prerequisite: CS 330, CS 351. (3-0-3) (T)

CS 441
Current Topics in Programming Languages
New topics in programming language design such as concepts of concurrent and distributed programming, communicating sequential processes, and functional programming. System development tools and language fea-
CS 445
Object-Oriented Design and Programming
Introduction to methodologies for object-oriented design and programming. Examines the model object and how it is realized in various object-oriented languages. Focuses on methods for developing and implementing object-oriented systems. Prerequisite: CS 331. (3-0-3) (T)

CS 450
Operating Systems
Introduction to operating system concepts, including system organization for uniprocessors and multiprocessors, scheduling algorithms, process management, deadlocks, paging and segmentation, files and protection, and process coordination and communication. Prerequisites: CS 331, CS 350 or ECE 242. (3-0-3) (T)

CS 451
UNIX Systems Programming
Introduction to systems programming using the UNIX operating system. Includes shells and shell script programming, use of systems calls in C/C++ programs, process control, interprocess communication, and basic system administration. Prerequisites: CS 351, CS 450. (3-0-3) (T)

CS 455
Data Communications
Introduction to data communication concepts and facilities with an emphasis on protocols and interface specifications. Focuses on the lower four layers of the ISO-OSI reference model. Prerequisite: CS 450. (3-0-3) (T)

CS 460
Fundamentals of Multimedia
Introduction to computer-based multimedia, including desktop publishing, hypermedia, presentation media, graphics, animation, sound, video, and integrated authoring techniques. Prerequisite: CS 105 or consent of instructor. (2-2-3) (C)

CS 461
Practicum in Teaching and Training Using Multimedia
Study and practical experience in teaching and training using computer-based multimedia. Introduction to the pedagogy and application of instructional methodologies. Prerequisite: CS 460. (3-0-3)

CS 470
Computer Architecture
Introduction to the functional elements and structures of digital computers. Detailed study of specific machines at the register transfer level illustrates arithmetic, memory, I/O and instruction processing. Prerequisites: CS 350, ECE 218. (2-2-3) (C) (T)

CS 471
Design of Computer Processors
Further study of the internal design and organization of computer architectures. Methods of interconnecting devices: bus structures, independent channels, interrupt-driven controllers, synchronous and asynchronous devices. Survey of current microprocessors and microcomputer systems, including hardware/software interfacing and application of these systems. Hands-on experience in the construction of a microcomputer system. Prerequisites: CS 470. (2-2-3) (C) (T)

CS 478
Software Engineering II
Study of advanced principles and practices of software engineering. Topics include software quality control, process models, software requirements analysis, design methodologies, software testing, and software maintenance. Hands-on experience building a software system using the waterfall life cycle model. Students work in teams to develop all life cycle deliverables: requirements document, specification and design documents, system code, test plan, and user manuals. Prerequisite: CS 331. (3-0-3) (C) (T)

CS 487
Software Engineering I
Study of the principles and practices of software engineering. Topics include software quality control, process models, software requirements analysis, design methodologies, software testing, and software maintenance. Hands-on experience building a software system using the waterfall life cycle model. Students work in teams to develop all life cycle deliverables: requirements document, specification and design documents, system code, test plan, and user manuals. Prerequisite: CS 331. (3-0-3) (C) (T)

CS 491
Undergraduate Research
Prerequisite: Written consent of instructor. (Credit: Variable)

CS 495
Topics in Computer Science
This course will treat a specific topic, varying from semester to semester, in which there is particular student or staff interest. Prerequisite: Consent of instructor. (Credit: Variable)

Graduate Courses
The following graduate courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty adviser. See the current IIT Bulletin: Graduate Programs for course descriptions.
CS 521 Object-Oriented Analysis and Design
CS 522 Data Mining
CS 524 Theory of Information Systems Design
CS 525 Advanced Database Organization
CS 527 Client/Server Applications Development I
CS 528 Client/Server Applications Development II
CS 529 Information Retrieval
CS 530 Formal Theory of Computation
CS 531 Topics in Automata Theory
CS 532 Formal Languages
CS 535 Analysis of Algorithms
CS 536 Science of Programming
CS 537 Software Metrics
CS 540 Syntactic Analysis of Programming languages
CS 541 Compiler Construction
CS 542 Computer Networks I: Fundamentals
CS 543 Advanced Topics in Computer Networks
CS 544 Computer Networks II: Network Services
CS 545 Concurrent Programming
CS 546 Parallel Processing
CS 548 Seminar in Broadband Integrated Services Networks
CS 550 Comparative Operating Systems
CS 551 Operating System Design and Implementation
CS 555 Analytic Models and Simulation of Computer Systems
CS 556 Computer-Assisted Instruction
CS 557 Practicum in the Application of Computers to Education
CS 558 Comparative Computer Architecture
CS 559 Advanced Computer Architecture
CS 560 Computer Science in the Classroom
CS 561 The Computer and Curriculum Content
CS 565 Computer-Assisted Instruction
CS 566 Practicum in the Application of Computers to Education
CS 570 Comparative Computer Architecture
CS 572 Advanced Computer Architecture
CS 580 Medical Informatics
CS 581 Advanced Artificial Intelligence
CS 582 Robotics
CS 583 Expert Systems
CS 584 Neural Networks
CS 585 Natural Language Processing
CS 586 Software Systems Architectures
CS 587 Programming Project Management
CS 588 Advanced Software Engineering Development
CS 589 Software Testing and Quality Assurance
CS 595 Topics in Computer Science

Electrical and Computer Engineering

ECE 100 Introduction to the Profession I
Introduces the student to the scope of the engineering profession and its role in society and develops a sense of professionalism in the student. Provides an overview of electrical engineering through a series of hands-on projects and computer exercises. Develops professional communication and teamwork skills. (1-2-2) (C)

ECE 101 Introduction to the Profession II
Continuation of ECE 100, primarily through short projects. Prerequisite: ECE 100. (0-3-2) (C)

ECE 211 Circuit Analysis I
Ohm’s Law, Kirchhoff’s Laws, and network element voltage-current relations. Application of mesh and nodal analysis to circuits. Dependent sources, operational amplifier circuits, superposition, Thevenin’s and Norton’s Theorems, maximum power transfer theorem. Transient circuit analysis for RC, RL and RLC circuits. Introduction to Laplace Transforms. Concurrent registration in ECE 212 and ECE 218 is strongly encouraged. Corequisite: MATH 252. (3-0-3)

ECE 212 Analog and Digital Laboratory I
Basic experiments with analog and digital circuits. Familiarization with test and measurement equipment;
ECE 213
Circuit Analysis II
Sinusoidal excitation and phasors. AC steady-state circuit analysis using phasors. Complex frequency, network functions, pole-zero analysis, frequency response, and resonance. Two-port networks, transformers, mutual inductance, AC steady-state power, RMS values, introduction to three-phase systems, and Fourier series. Concurrent registration in ECE 214 is strongly encouraged. Prerequisite: Grade of “C” or better in ECE 211. (3-0-3)

ECE 214
Analog and Digital Laboratory II
Design-oriented experiments including counters, finite state machines, sequential logic design, impedances in AC steady-state, resonant circuits, two-port networks, and filters. A final project incorporating concepts from analog and digital circuit design will be required. Prerequisite: ECE 212. Corequisite: ECE 213. (0-3-1) (C)

ECE 218
Digital Systems
Number systems and conversions, binary codes, and Boolean algebra. Switching devices, discrete and integrated digital circuits, analysis and design of combinational logic circuits, Karnaugh maps and minimization techniques. Counters and registers. Analysis and design of synchronous sequential circuits. Concurrent registration in ECE 211 and ECE 212 is strongly encouraged. Prerequisite: Sophomore standing. (3-0-3)

ECE 242
Digital Computers and Computing
Basic concepts in computer architecture, organization, and programming, including: integer and floating point number representations, memory organization, computer processor operation (the fetch/execute cycle), and computer instruction sets.

Programming in machine language and assembly language with an emphasis on practical problems. Brief survey of different computer architectures. Prerequisites: CS 105, ECE 218. (3-0-3)

ECE 307
Electrodynamics
Vector analysis applied to static and time-varying electric and magnetic fields. Coulomb’s Law, electric-field intensity, flux density and Gauss’s Law. Energy and potential. Biot-Savart and Ampere’s Law. Maxwell’s equations with applications including uniform-plane wave propagation. Prerequisites: PHYS 221, MATH 251. (3-3-4)

ECE 308
Signals and Systems
Time and frequency domain representation of continuous and discrete time signals. Introduction to sampling and sampling theorem. Time and frequency domain analysis of continuous and discrete linear systems. Fourier series, convolution, transfer functions. Fourier transforms, Laplace transforms, and Z-transforms. Prerequisite: ECE 213. Corequisite: MATH 333. (3-0-3)

ECE 309
Traveling Waves
Analysis and design of circuits using distributed network elements. Response of transmission lines with linear and nonlinear loads to digital and transient signals. AC steady-state of lossless and lossy lines. The Smith Chart as an analysis and design tool. Impedance matching methods; transmission line transformers. Prerequisites: ECE 213, PHYS 221. (3-0-3)

ECE 311
Engineering Electronics
Physics of semiconductor devices. Diode operation and circuit applications. Regulated power supplies. Bipolar and field-effect transistor operating principles. Biasing techniques and stabilization. Linear equivalent circuit analysis of bipolar and field-effect transistor amplifiers. Laboratory experiments reinforce concepts. Prerequisites: ECE 213, ECE 214. (3-3-4) (C)

ECE 312
Electronic Circuits
Analysis and design of amplifier circuits. Frequency response of transistor amplifiers. Feedback amplifiers. Operational amplifiers: internal structure, characteristics and applications. Stability and compensation. Laboratory experiments reinforce concepts. Prerequisite: ECE 311. (3-3-4) (C)

ECE 319
Fundamentals of Power Engineering
Principles of electromechanical energy conversion. Fundamentals of the operation of transformers, synchronous machines, induction machines, and fractional horsepower machines. Introduction to power network models and per-unit calculations. Gauss–Siedel load flow. Lossless economic dispatch. Symmetrical three-phase faults. Laboratory considers operation, analysis and performance of motors and generators. The laboratory experiments also involve use of PC-based interactive graphical software for load flow, economic dispatch, and fault analysis. Prerequisites: ECE 213, ECE 214, PHYS 221. (3-3-4) (C)

ECE 383
Electric and Electronic Circuits
Circuit concepts, Ohm’s Law. Kirchhoff’s Laws, network theorems. Circuit elements, DC and AC network analysis. Diodes, transistors and electronic amplifiers. Digital electronics circuits and instrumentation. Credit for this course not applicable to a B.S.E.E. or a B.S.C.P.E. degree and will not count in the EE or CPE major GPA. Prerequisite: PHYS 221. (3-0-3)

ECE 401
Communication Electronics
Radio frequency AM, FM and PM transmitter and receiver principles. Design of mixers, oscillators, impedance matching networks, filters, phase-locked loops, tuned amplifiers, power amplifiers, and crystal circuits. Nonlinear effects, intermodulation distortion and noise. Transmitter and receiver design specification. Credit will be given for either ECE 401 or ECE 409, but not for both.
ECE 403
Communication Systems

ECE 404
Digital and Data Communications
Channel capacity, entropy; digital source encoding considering bit rate reduction, quantization, waveshaping and intersymbol interference. Analysis and design of digital modulators and detectors. Matched filters. Probability of error analysis. Credit will be given for either ECE 404 or ECE 406, but not for both. Prerequisites: ECE 403 and ECE 475 or MATH 475. (3-0-3) (P)

ECE 406
Digital and Data Communications with Laboratory
Channel capacity, entropy, digital source encoding considering bit rate reduction, quantization, waveshaping, and intersymbol interference. Analysis and design of digital modulators and detectors. Matched filters. Probability of error analysis. Laboratory covers modulation, detection, sampling, analog-to-digital conversion, error detection, and an open-ended project. Credit will be given for either ECE 404 or ECE 406, but not for both. Prerequisites: ECE 403 and ECE 475 or MATH 475. (3-3-4) (P) (C)

ECE 407
Computer Communications Systems
The ISO-OSI layered architecture, packet switching and circuit switching, error detection and recovery (ARQ) protocols, bridges and routers, basic queueing theory, telephone switches, Erlang-B and Erlang-C blocking formulae, TCP/IP, X.25, signaling (Signaling System 7), Personal Communication Services (PCS) networks, Broadband Networks. Prerequisite: ECE 475 or MATH 475. (3-0-3) (P) (C)

ECE 409
Communication Electronics with Laboratory
Radio frequency AM, FM and PM transmitter and receiver principles. Design of mixers, oscillators, impedance matching networks, filters, phase-locked loops, tuned amplifiers, power amplifiers, and crystal circuits. Nonlinear effects, intermodulation distortion and noise. Transmitter and receiver design specifications. Laboratory experiments reinforce concepts and include an open-ended design problem. Credit will be given for either ECE 401 or ECE 409, but not both. Prerequisites: ECE 309, ECE 412. Corequisite: ECE 403. (3-3-4) (P) (C)

ECE 411
Power Electronics
Power electronic circuits and switching devices such as power transistors, MOSFETs, SCR, GTOs, IGBTs and UJTs are studied. Their applications in AC/DC, DC/DC, DC/AC and AC/AC converters as well as switching power supplies are explained. Simulation mini-projects and lab experiments emphasize power electronic circuit analysis, design and control. Prerequisite: ECE 311. (3-3-4)

ECE 412
Electric Motor Drives
Fundamentals of electric motor drives are studied. Applications of semiconductor switching circuits to adjustable speed drives, robotic and traction are explored. Selection of motors and drives, calculating the ratings, speed control, position control, starting and braking are also covered. Simulation mini-projects and lab experiments are based on the lectures given. Prerequisites: ECE 308, ECE 311, ECE 319. (3-3-4)

ECE 414
Audio and Electroacoustics
Analysis and design of audio preamplifiers, power amplifiers, passive and active filters. Acoustic principles. Basics of magnetic recording. Project laboratory: the design, construction, troubleshooting and testing of components of an audio system. Prerequisite: ECE 312. (3-3-4) (P) (C)

ECE 419
Power Systems Analysis
Transmission systems analysis and design. Large scale network analysis using Newton-Raphson load flow. Unsymmetrical short-circuit studies. Detailed consideration of the swing equation and the equal-area criterion for power system stability studies. Power system controls: voltage regulators and speed governors. Prerequisite: ECE 319. (3-0-3) (P)

ECE 420
Analytical Methods in Power Systems
Fundamentals of power systems operation and planning. Economic operation of power systems with consideration of transmission losses. Design of reliable power systems, power systems security analysis, optimal scheduling of power generation, estimation of power system state. Prerequisite: ECE 309. (3-0-3) (P)

ECE 421
Microwave Circuits and Systems
Maxwell’s equations, waves in free space, metallic and dielectric waveguides, microstrips, microwave cavity resonators and components, ultra-high frequency generation and amplification. Analysis and design of microwave circuits and systems. Credit will be given for either ECE 421 or ECE 423, but not for both. Prerequisites: ECE 307, ECE 309. (3-0-3) (P)

ECE 423
Microwave Circuits and Systems with Laboratory
Maxwell’s equations, waves in free space, metallic and dielectric waveguides, microstrips, microwave cavity resonators and components, ultra-high frequency generation and amplification. Analysis and design of microwave circuits and systems. Credit will be given for either ECE 421 or ECE 423, but not for both. Prerequisites: ECE 307, ECE 309. (3-3-4) (P) (C)
ECE 426
Linear Integrated Circuits
Analysis and design of linear analog integrated circuits. Contemporary semiconductors (Si, GaAs, InP), fabrication techniques (CVD, MOCVD), MOS and Bipolar devices and their models. Circuits (operational amplifiers, multipliers) and their subcircuit elements (differential amplifier, current source). Simulation of integrated circuits. Prerequisite: ECE 312. (3-0-3) (P)

ECE 427
Digital Integrated Circuits
Analysis and design of input and output circuits for various logic families and their relation to specifications and interfacing techniques. Speed, fanout, noise immunity and temperature dependence. The study of semiconductor memories, MSI, LSI circuits and applications. Prerequisites: ECE 218, ECE 312. (3-0-3) (P)

ECE 429
Introduction to VLSI Design
Processing, fabrication, and design of Very Large Scale Integration (VLSI) circuits. MOS transistor theory, VLSI processing, circuit layout, layout design rules, layout analysis, and performance estimation. The use of computer-aided design (CAD) tools for layout design, system design in VLSI, and application-specific integrated circuits (ASICs). In the laboratory, students create, analyze, and simulate a number of circuit layouts as design projects, culminating in a term design project. Credit for ECE 429 will not be given if ECE 530 is taken. Prerequisites: ECE 218, ECE 311, and senior standing. (3-3-4) (P) (C)

ECE 433
Real-Time Signal Processing
A design-oriented course stressing real-time applications of signal and system theory, computers and instrumentation. Analog and digital signals, transducers, signal conditioning, analog-to-digital and digital-to-analog conversion, real-time signal processing. The laboratory considers design problems from various fields. Prerequisites: ECE 308, ECE 312. (3-3-4) (P) (C)

ECE 434
Control Systems with Laboratory
Signal flow graphs and block diagrams. Types of feedback control. Steady state tracking error. Stability and Routh-Hurwitz criterion. Transient response and time domain design via root locus methods. Frequency domain analysis and design using Bode and Nyquist methods. Introduction to state variable descriptions. The laboratory consists of the complete design of a control system, with major tasks being modeling, controller design, and performance testing. Credit will be given for either ECE 434 or ECE 438, but not for both. Prerequisite: ECE 308. (3-3-4) (P) (C)

ECE 436
Digital Signal Processing I with Laboratory
Discrete-time system analysis, discrete convolution and correlation, Z-transforms. Realization and frequency response of discrete-time systems, properties of analog filters, IIR filter design, FIR filter design. Discrete Fourier Transforms. Applications of digital signal processing. Credit will be given for either ECE 436 or ECE 437, but not for both. Prerequisite: ECE 308. (3-3-4) (P) (C)

ECE 437
Digital Signal Processing II
Discrete-time system analysis, discrete convolution and correlation, Z-transforms. Realization and frequency response of discrete-time systems, properties of analog filters, IIR filter design, FIR filter design. Discrete Fourier Transforms. Applications of digital signal processing. Credit will be given for either ECE 436 or ECE 437, but not for both. Prerequisite: ECE 308. (3-3-4) (P) (C)

ECE 438
Control Systems
Signal-flow graphs and block diagrams. Types of feedback control. Steady-state tracking error. Stability and Routh Hurwitz criterion. Transient response and time domain design via root-locus methods. Frequency domain analysis and design using Bode and Nyquist methods. Introduction to state-variable descriptions. Credit will be given for either ECE 438 or ECE 434, but not for both. Prerequisite: ECE 308. (3-0-3) (P)

ECE 441
Microcomputers
Microprocessors and stored program controllers. Memories. Standard and special interfaces. Hardware design. Software development. Interrupt systems. Hardware and software design tools. System design and troubleshooting. Emphasis on examples. Prerequisites: ECE 218 or CS 470, ECE 242 or CS 350, and senior standing. (3-3-4) (P) (C)

ECE 446
Advanced Logic Design
Design and implementation of complex digital systems under practical design constraints. Timing and electrical considerations in combinational and sequential logic design. Digital system design using Algorithmic State Machine (ASM) diagrams. Design with modern logic families, programmable logic, and application-specific integrated circuits (ASICs). Design-oriented laboratory stressing the use of programmable logic devices. Prerequisites: ECE 218, ECE 311, senior standing. (3-3-4) (P) (C)

ECE 448
Mini/Micro Computer Programming
Engineering applications programming using the C language in a UNIX environment. Use of UNIX tools including filters and shell scripts. Overview of UNIX software design practices using tools such as Make and SCCS. The UNIX system interface. Software design projects. Prerequisites: CS 105, ECE 242 or CS 350, and senior standing. (3-0-3) (P)

ECE 449
Object-Oriented Programming and Computer Simulation
The use of object-oriented programming to develop computer simulations of engineering problems. Programming with the C++ language in a UNIX environment. OOP concepts including classes, inheritance and polymorphism. Programming
with class libraries. Event-driven simulation techniques in an object-oriented environment. Programming projects will include the development of a simulator for an engineering application. Prerequisites: ECE 448, senior standing. (3-0-3) (P)

ECE 470
Photronics
An engineering-oriented treatment of optics and photonics, concentrating on optical design for communications and sensor systems. Electromagnetic theory of optics and its application to free-space and guided-wave optical systems; polarization states; optical components; fiber and integrated-optic waveguides; semiconductor sources and detectors; electro-optic and acousto-optic modulation techniques. Credit will be given for either ECE 470 or ECE 471, but not for both. Prerequisites: ECE 307, ECE 309. (3-0-3) (P)

ECE 471
Photronics with Laboratory
An engineering-oriented treatment of optics and photonics, concentrating on optical design for communications and sensor systems. Electromagnetic theory of optics and its application to free-space and guided-wave optical systems; polarization states; optical components; fiber and integrated-optic waveguides; semiconductor sources and detectors; electro-optic and acousto-optic modulation techniques. Laboratory section introduces optical measurement techniques. Characterization of passive optical components and dielectric waveguides. Design of interferometric sensors. Design and testing of optical transmitters and receivers for communication systems. Credit will be given for either ECE 470 or ECE 471, but not for both. Prerequisites: ECE 307, ECE 309, ECE 312. (3-0-3) (P) (C)

ECE 475
Random Phenomena in Electrical Engineering
Basic axioms of probability. Signals as random variables. Distribution and density functions. Functions of random variables. Applications to the binary symmetric communication channel, square-law and other nonlinear devices. The Gaussian, Poisson and other distributions. Application to photon counting. The signal-plus-noise problem. The DC and AC value of signals: mean and variances. The meaning of signal-to-noise ratio. Higher moments. Estimation of the mean and variance. Confidence intervals. Credit will be given for either ECE 475 or MATH 475, but not for both. Prerequisite: ECE 308. (3-0-3)

ECE 481
Image Processing
Mathematical foundations of image processing, including two-dimensional discrete Fourier transforms, circulant and block-circulant matrices. Digital representation of images and basic color theory. Fundamentals and applications of image enhancement, restoration, reconstruction, compression and recognition. Prerequisite: ECE 437. Corequisite: ECE 475 or MATH 475. (3-0-3) (P)

ECE 483
Switching Circuit Theory
Design, synthesis and analysis of synchronous and asynchronous sequential circuits. Foundations of discrete logic, including set theory, graphs algebraic structures. Descriptions and capabilities of sequential circuits. Properties of sequential circuits applicable to the design process. Minimization, decomposition and machine structure. Fault detection and hazards. Prerequisites: ECE 218 or CS 330, and senior standing. (3-0-3) (P)

ECE 491
Undergraduate Research
Independent work on a research project supervised by a faculty member of the department. Prerequisites: Written consents of academic adviser and instructor. (Credit: 1-3 credit hours) (P)

ECE 497
Special Problems
Design, development, analysis of advanced systems, circuits or problems as defined by a faculty member of the department. Prerequisites: Written consents of academic adviser and instructor. (Credit: 1-3 credit hours) (P)

Special Note
ECE undergraduate students are not permitted to take any courses via Internet, unless they have the written permission of the course instructor, their academic adviser, and the ECE chair.

Graduate Courses
Any ECE undergraduate student wishing to take a graduate course for a degree program must have the written approval of the course instructor, faculty adviser and the ECE department chair. Generally, a 3.5/4.0 major GPA is required for departmental approval. The following ECE graduate courses are available to qualified degree-seeking undergraduate students under the above conditions. Course descriptions are in the current IIT Bulletin: Graduate Programs or online at www.iit.edu -- go to Current Students-go to Web for Students.
ECE 540
Reliability Theory and System Implementation

ECE 541
Performance Evaluation of Computer and Communication Networks

ECE 545
Computer Communication Networks

ECE 556
Modern Power System Analysis

ECE 557
Fault Tolerant Power Systems

ECE 558
Power System Reliability

ECE 564
Control and Operation of Electric Power Systems

ECE 569
Digital Signal Processing II

ECE 575
Electron Devices

ECE 578
Microwave Theory

ECE 581
Computer and Robotic Vision

ECE 585
Digital Computer Design

ECE 586
Fault Detection in Digital Circuits

ECE 588
CAD Techniques for VLSI Design

Economics

ECON 211
Principles of Macroeconomics
The determination of output, employment and the rate of inflation. Topics include a broad-based discussion of the controversies in macro-economics, the appropriate use of fiscal and monetary policy, the effects of a budget deficit, determination of the rate of exchange, and the trade deficit. (3-0-3) (S)

ECON 423
Economic Analysis of Capital Investments
The evaluation of proposed capital investments in the public and private sectors. Equivalent worth, rate of return, and benefit/cost methods. Treatment of the time value of money, taxes, inflation, risk, interrelated investments and capital budgeting. Prerequisite: Junior standing. (3-0-3) (S)

EG 100
Basic Technical Drawing
Designed for students who are not prepared to take EG 105 because they have had little or no high school technical drawing or who need a slower approach to the subject. Special emphasis is placed upon the use of instruments, lettering, line technique, and introductory multiview projection. (0-4-1)

EG 105
Engineering Graphics and Design
Basic traditional and computer-based techniques and applications, multiview sketching, orthographic projection, isometric and oblique pictorials, sectioning, auxiliary views, principles of descriptive geometry, dimensioning, detail drawings, introduction to design and computer-aided drafting and design (CAD). Prerequisites: Trigonometry. (1-2-2)

EG 131
Architectural Engineering Graphics
Basic techniques of engineering graphics, emphasizing application in architectural engineering. Lettering, multiview sketching, and orthographic projection. Principles of dimensioning, plan, elevation and sectional views of structures. Isometric and perspective sketching and drawing. Introduction to building systems and materials. Introduction to computer-aided drafting and design (CAD). Prerequisite: Trigonometry. (1-2-2)

EG 204
Blueprint Reading for Machine Industries
Industrial prints, views of objects, analysis of edges and surfaces, sectional views, auxiliary views, screw threads and fasteners, dimensioning, shop processes, first-angle drawing, R.H. and L.H. drawings, and welding representation. (1-3-2)

EG 224
Blueprint Reading for Building Trades
Analysis of building construction drawings and details, dimensioning, shop processes, use of symbols and conventions, material takeoff, and elementary estimating. (1-3-2)

EG 225
Engineering Graphics for Non-Engineers
Designed for students in business, liberal arts and non-technical programs. Basic drafting techniques and applications, lettering, geometric constructions, charts and graphs, technical sketching, multiview projection, pictorial drawings, dimensioning, blueprint reading and working drawings. Introduction to computer graphics. Credit for this course is not applicable to an engineering degree. (2-1-3)

EG 305
Advanced Engineering Graphics and Design
Advanced study of auxiliary views and sectioning, gears and cams, threads and fasteners, working drawings, assembly drawings, electronic drafting, ANSI drafting standards, and computer-aided drafting and design. Engineering design project. Prerequisite: EG 105. (2-2-3)

EG 306
Engineering Descriptive Geometry
Graphic solutions of problems involving point, line and plane relationships by auxiliary views and revolutions. Developments and intersections of surfaces. Parallelism and perpendicularity, vectors, mining and civil engineering problems. Shades and shadows, conics, map projection and spherical triangles. Emphasis on those applications that promote visualization and introduce new engi-
neering experience. Applications of computers to problem solving. Prerequisite: EG 105. (2-2-3)

EG 308
Architectural Drawing I
Elements of architectural drafting. Lettering, symbols, plan layout, and elementary design in basic materials. Standard details of windows, doors, floors, roofs, stairs, framing. Perspective sketching. Prerequisite: EG 105 or consent of instructor. (2-2-3)

EG 309
Architectural Drawing II
A continuation of EG 308, with more complicated layout problems of residential, small commercial, and industrial buildings. Detailed study of functions of the building. Methods of construction and use of materials and simple perspectives. Prerequisite: EG 308. (2-2-3)

EG 310
Architectural Drawing III
Individual problems assigned to each student; each project developed from schematic plan through all stages of design, including sketches, working drawings, and presentation drawings; perspective drawing with rendering in all media. Prerequisite: EG 309. (2-2-3)

EG 312
Architectural Freehand Drawing
Accurate and rapid sketching, with special emphasis on architectural forms, proportions, perspective; pencil, crayon, chalk, and brush techniques; simple composition problems. Prerequisite: EG 105 or consent of instructor. (2-2-3)

EG 313
Architectural Detailing
Comprises design and drawing and the fitting together of various materials used in erecting and finishing contemporary and traditional buildings. Prerequisite: EG 309 or consent of instructor. (2-2-3)

EG 325
Advanced Engineering Graphics for Non-Engineers
Continuation of EG 225. Threads and fasteners, sectioning and auxiliary views, limit dimensioning, detail and assembly drawings, data representation, principles of descriptive geometry, manufacturing processes and computer graphics/CAD. Credit for this course is not applicable to an engineering degree. Prerequisite: EG 225. (2-1-3)

EG 329
Graphic Representation for Non-Engineers
Basic techniques of graphics applied to communications and report writing. Use of Harvard Graphics to generate charts and graphs including two- and three-dimensional line charts and pie charts. Integration of graphical presentations into technical and business reports. Credit for this course is not applicable to an engineering degree. Prerequisite: EG 225. (2-2-3)

EG 405
Mechanical Design Graphics
Basic concepts of mechanical design and analysis. Advanced design layouts, details, assemblies, tolerance systems, surface finish control, materials, processes, ANSI drafting standards, engineering data processing systems and procedures, application of computers to design, and CAD/CAM. Prerequisite: EG 305. (2-2-3)

EG 406
Technical and Pictorial Illustration
Theory and construction of parallel and perspective pictorial projections, axonometric and oblique projections, parallel and angular perspective. Explored pictorial assemblies. Basic rendering techniques used in technical illustration. Introduction to computer-generated pictorials. Prerequisite: EG 105. (2-2-3)

EG 409
Computer-Generated Pictorial Projections
Study of computer-generated representations of three dimensional objects. Projections include multiview, perspective, axonometric and oblique. Prerequisites: EG 406. (2-2-3)

EG 419
Computer Graphics in Engineering
Techniques of computer-aided design and computer-aided manufacturing.

Study of various computer graphic hardware and software systems through demonstrations and use. Prerequisites: EG 105 and junior standing or consent of instructor. (2-2-3)

EG 425
Computer Graphics for Non-Engineers
Principles and applications of computer graphics in business and nontechnical fields. Study of computer graphics hardware and software systems. Use of computer in producing charts, graphs and technical drawings. Use of PC-CAD in problem solving and design. Credit for this course is not applicable to an engineering degree. Prerequisite: EG 325. (2-1-3)

EG 429
Computer Graphics for Desktop Publishing
Integration of computer graphic-generated images into technical and business reports produced with popular desktop publishing software. Emphasis on creation and selection of graphical presentations for optimum readability. Scanning and retouching techniques for two- and three-dimensional presentations. Introduction to multi-media and slide presentations. Credit for this course is not applicable to an engineering degree. Prerequisite: EG 329. (2-2-3)

Graduate Courses
Graduate courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty adviser. See the current *IIT Bulletin: Graduate Programs* for course descriptions. (Credit: Variable)
Environmental Engineering

ENVE 100
Introduction to the Profession I
Introduction to environmental engineering and engineering productivity software. Communication skills, development, technical reporting and presentation, engineering ethics, and a variety of topics are discussed. (1-2-2) (C)

ENVE 101
Introduction to the Profession II
A continuation of ENVE 100. Advanced engineering applications of productivity software. Engineering graphics and technical flow-sheeting. Team project research and project management skills. Internet publishing. Prerequisite: ENVE 100. (0-4-2) (C)

IPRO 296
Introduction to IPRO
Introduction to process design principles and techniques in effective team work. Performance of selected design tasks in project groups integrated with CHE/ENVE 496. Practice with process design software. First part of the IPRO project package. Only ENVE students should register for this course. Prerequisite: ENVE 101, CHE 202 or consent of instructor. (0-2-1) (C)

ENVE 302
Environmental Chemistry
Chemical principles of environmental systems, including an introduction to acid-base reactions, gas transfer, chemical speciation, precipitation and oxidation-reduction reactions. Corequisite: CHEM 343. (2-3-3) (C)

ENVE 305
Geochemical Cycles
The movement and fate of chemicals within the three phases of the environment: Air, water and terrestrial solids. Emphasis is placed on models and mechanisms that determine the rates, lifetime, routes and reservoirs of chemicals moving through the environment. Prerequisites: MATH 252, CHE 202, ENVE 302. (3-0-3)

ENVE 401
Introduction to Water-Resources Engineering
Principles of hydraulics and water demand projections as used in the design of reservoirs, water distribution systems, and storm and sanitary sewers; aspects of water resource management and environmental engineering economics. Prerequisite: CHE 301. (3-0-3)

ENVE 404
Water and Wastewater Engineering
Principles and applications of physical, chemical and biological processes for water and waste purification. Design of engineering treatment systems to meet water quality and effluent standards. Prerequisite: ENVE 302. (3-0-3)

ENVE 405
Environmental Impact Assessment
Modeling methods for the prediction and assessment of environmental impacts due to changes in the physical, chemical or biological environment. Comparative studies of methodologies to assess immediate and extended effects, including trends in space and time due to changes in anthropogenic systems. Includes an overview of environmental regulations. Prerequisite: ENVE 305. (3-0-3)

ENVE 407
Environmental Monitoring
Sampling and analytical methods used in the assessment of environmental impacts due to changes in the physical, chemical or biological environment. There is an emphasis on sample planning, data evaluation and interpretation. Corequisite: ENVE 426. (1-3-2) (C)

ENVE 426
Statistical Tools for Engineers
Descriptive statistics and graphs, probability distributions, random sampling, independence, significance tests, design of experiments, regression, time-series analysis, statistical process control, and introduction to multivariate analysis. Prerequisite: Junior standing. (3-0-3)

ENVE 463
Introduction to Air Pollution Control
Air pollution sources and characteristics of source emissions, atmospheric reactions, effects of pollutants, and techniques of emission control; legal and administrative aspects of air pollution control. Prerequisite: CHE 301. (3-0-3)

ENVE 476
Engineering Control of Industrial Hazards
Design of control systems to enhance occupational safety and health; how to recognize and control existing or potential safety and health hazards. Prerequisites: ENVE 305, ENVE 426. (3-0-3)

ENVE 480
Solid Waste Engineering
Quantities and characteristics of solid, hazardous and municipal waste; collection methods, equipment, and costs; and refuse disposal practices, regional planning, and management. Prerequisite: ENVE 305. (3-0-3)

ENVE 481
Hazardous Waste Engineering
Engineering principles applied to the control of hazardous waste generation, handling, collection, transport, processing, recovery and disposal. Treatability and design of hazardous waste treatment processes. Corequisites: ENVE 404, ENVE 463. (2-3-3) (C)

ENVE 485
Pollution Prevention
An interdisciplinary course that draws upon material from chemical, electrical, environmental and mechanical engineering disciplines. This course reviews regulations and explores the tools used to set up and maintain pollution prevention programs. Topics include process assessments; defining and ranking pollution prevention options; feasibility analyses including technical, environmental, and economic aspects; and life cycle analysis. (3-0-3)
ENVE 490 Environmental Processes Laboratory
Laboratory work in environmental processes including filtration, gas transfer, adsorption, biological systems and other selected topics. Prerequisites: ENVE 404, ENVE 463. (1-3-2) (C)

ENVE 494 Environmental Engineering Design
Application of technical and economic principles to the design of environmental equipment, processes and systems. Material from previous courses is integrated into practical design problems. Offered jointly with CHE 494. Prerequisite: CHE 302. (2-2-3)

IPRO 496 Process Design IPRO
Group project in process design. Integration of technical, safety, environmental, economic and societal issues in process development and design. Final part of the IPRO project package. Project teams consist of chemical and environmental engineering students and students from other disciplines and professions. Students from other academic units should register for designated section of IPRO 29713971497 (3 credits) and their contribution to the project tasks will be defined accordingly. Only ENVE students should register for this course. Prerequisites: ENVE 494, IPRO 296. Co-requisites: ENVE 404, ENVE 463. (1-2-2) (C)

Graduate Courses
The following graduate courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty advisor. See the current IIT Bulletin: Graduate Programs for course descriptions.

ENVE 501 Environmental Chemistry
ENVE 503 Water and Wastewater Analysis
ENVE 506 Chemodynamics
ENVE 513 Biological Processes in Wastewater Treatment
ENVE 542 Physical and Chemical Processes of Water and Waste Treatment
ENVE 545 Environmental Regulations and Risk Assessment
ENVE 570 Air Pollution Meteorology
ENVE 572 Ambient Air Monitoring
ENVE 576 Indoor Air Pollution
ENVE 585 Groundwater Contamination and Pollutant Transport

French
Most students may take 200-level foreign language courses for a general education requirement in the humanities, but students seeking engineering degrees must receive the permission of the dean of the Undergraduate College to assure that they satisfy accreditation requirements. A student with prior acquaintance of a language is placed in a course at the proper level by the instructor. Most students with two years of high school French are prepared for FREN 201.

FREN 101 Elementary French I
An introduction to modern French, with exercises in translation, grammar, conversation and comprehension. (3-0-3)

FREN 102 Elementary French II
A study of modern French emphasizing structural analysis and developing comprehension, translation and conversation skills. Reading of selected French texts and exercises in composition. Prerequisite: FREN 101. (3-0-3)

FREN 201 Intermediate French I
Continuation of training in written and oral expression. Study of French literary works and composition of reports. Prerequisite: FREN 102. (3-0-3) (H)

FREN 202 Intermediate French II
Training towards fluency in modern French. Classroom analysis of French literature, with collateral readings and an emphasis on written reports. Prerequisite: FREN 201. (3-0-3) (H)

German
Most students may take 200-level foreign language courses for a general education requirement in the humanities, but students seeking engineering degrees must receive the permission of the dean of the Undergraduate College to assure that they satisfy accreditation requirements. A student with prior acquaintance of a language is placed in a course at the proper level by the instructor. Most students with two years of high school German are prepared for GER 201.

GER 101 Elementary German I
An introduction to modern German, with exercises in translation, grammar, conversation and comprehension. (3-0-3)

GER 102 Elementary German II
A study of modern German emphasizing structural analysis and developing comprehension, translation and conversation skills. Reading of selected German texts and exercises in composition. Prerequisite: GER 101. (3-0-3)

GER 201 Intermediate German I
Continuation of training in written and oral expression. Study of German literary works and composition of reports. Prerequisite: GER 102. (3-0-3) (H)
GER 202
Intermediate German II
Training towards fluency in modern German. Classroom analysis of German literature, with collateral readings and an emphasis on written reports. Prerequisite: GER 201.
(3-0-3) (H)

History

HIST 300
History of Western Civilization to the Renaissance
Development of Greek and Roman civilization; beginnings of Christianity; Europe in the Middle Ages; feudalism and manorialism; organization of the Church the Crusades; medieval intellectual life; the Renaissance. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement.
(3-0-3) (H) (C)

HIST 301
History of Western Civilization from the Renaissance
Protestant Reformation; the Scientific Revolution; Age of Louis XIV; Enlightenment; the Age of Democratic Revolution; Industrial Revolution; Nationalism and Imperialism; World War I; Communism and Fascism; World War II and after. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement.
(3-0-3) (H) (C)

HIST 305
Latin America: 1810-Present
The history of Latin America from colonial times emphasizing the political evolution of the several republics. Special consideration will be given to the political, economic, military and social relations of the U.S. with Latin American countries in the 20th century. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement.
(3-0-3) (H) (C)

HIST 310
Nineteenth-Century Europe: 1789-1900
Survey and analysis of nineteenth-century European history. The French Revolution and Napoleon; conservatism, liberalism, and romanticism; Industrial Revolution; nationalism and the unification of nation states; revolutions of 1848; imperialism; and major intellectual movements. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement.
(3-0-3) (H) (C)

HIST 311
Twentieth-Century Europe: 1890-1945
Nationalism and nation states; patterns of diplomacy; origins, conduct, and settlement of World War I; Russian Revolution; fate of democracy; rise of totalitarianism; World War II and the Holocaust. Prerequisite: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement.
(3-0-3) (H) (C)

HIST 312
Contemporary Europe, 1945-Present
Settlement of World War II; political and economic reconstruction; Cold War; Third World nationalism and the end of colonialism; the United States and Europe; Soviet Union and Eastern Europe from Stalin to Yeltsin; the end of communism in Eastern Europe and the disintegration of the Soviet Union. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement.
(3-0-3) (H) (C)

HIST 320
Nineteenth-Century European Intellectual and Cultural History
Survey of major developments in political, literary, scientific, religious, philosophical, and social thought. Topics vary and may include Romanticism, Positivism, Liberalism, Socialism, Darwinism, Religion and Science Controversy, and movements in art and literature. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement.
(3-0-3) (H) (C)

HIST 333
Ethnicity in American History and Life
Examines the creation of the American nationality from its diverse roots, which include almost all the world's great cultures. Special stress on immigration, African American history, and the relationships among concepts of race, class and gender. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement.
(3-0-3) (H) (C)

HIST 334
The Creation of America: The New World to 1789
Examines how the U.S., its values and its institutions came to be. Colonization, "Indian" relations, slavery, the American Revolution and the Constitution are studied in the context of the colonial world, including Latin America. Controversial issues and the challenge of discovery are stressed. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement.
(3-0-3) (H) (C)

HIST 336
The Industrialization of America: 1789-1898
Traces America's transformation from agrarian republic to Industrial Empire. Stresses impact of industrialization on all aspects of life, the nature of slavery, the failures of "Reconstruction," and the western and urban frontiers. Explores the adventures that made America a great power. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement.
(3-0-3) (H) (C)

HIST 337
The American Century: 1898-1975
Traces how America attained economic and military power and what it did with that power at home and abroad. Discusses the World Wars, the Great Depression, the limits of the "welfare state," the movement for Black equality, and the transformations of the 1960s. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement.
(3-0-3) (H) (C)
HIST 338
Contemporary America: 1960 and After
Explodes the historical roots of contemporary issues. Topics vary by semester but always include the Cold War and America’s international position, tensions over immigration and racial integration, and the historic roots of changes in popular culture and daily life. Prerequisites: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

HIST 350
U.S. Urban History
Basic facts and issues of U.S. urban history; reasons for the growth, development and decay of cities; origins of contemporary urban political, social and economic problems. Prerequisites: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

HIST 340
Rise of Global Economy
A historical analysis of contemporary globalization in trade, technology, labor and culture. The course includes a comparative analysis of the world’s leading economies (e.g. Great Britain, Germany, United States and Japan) and considers their varied responses to industrial revolutions in the past two centuries. Prerequisites: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

HIST 341
Modern East Asia
A survey of East Asian history since 1800, with special emphasis on the political and cultural history of China, Japan and the Koreans. Prerequisites: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

HIST 346
America and Vietnam
Utilizing video materials, this course covers the history of Vietnam under French domination, independence, civil war and the eventual participation of the United States in its longest and most divisive war. (3-1-3) (H) (C)

HIST 349
African-American Experience
A study of the African-American experience since 1800, including African roots, formal and informal institutions of oppression, change in continuity in folk culture, and history of social institutions. Prerequisites: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

HIST 381
Science in Industrial Society: 1750-1900
The transformation of the physical and biological sciences from the Enlightenment to the 20th Century and its effects on culture, politics and belief; the creation of science-based technologies and the creation of the profession of scientist. Prerequisites: ENGL 101, HUM 102 or equivalents; a 100-level humanities course; and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

HIST 382
Technology in History: 1500-1850
Explores the process of technological change during the birth of industrial societies. Considers the context of early industrial development in Europe, then examines the industrial revolution in Britain and America. Concludes by assessing technology’s role in European domination of Asia and Africa. Prerequisites: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

HIST 383
Technology in History: 1850 to Present
Examines technological change as a characteristic activity of modern societies. Investigates the science-based “second” Industrial Revolution in Europe and America. Explores the varied responses of artists, writers, architects and philosophers to the machine age. Concludes by discussing technology’s place in the modern nation-state. Prerequisites: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

HIST 384
Science in the Twentieth Century
Development of quantum theory, relativity and molecular biology; the growth of science to its present important position in government, economic life and technological development. Prerequisites A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)
HIST 491
Independent Reading and Research
For advanced students. Prerequisite: Consent of department. (Credit: Variable) (H) (C)

Humanities

HUM 102
Industrial Culture
An interdisciplinary course that examines the development of modern industrial society and the impact of science and technology on our culture. Readings drawn from history, literature and philosophy. Prerequisite: Satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

HUM 104
Age of Darwin
An introduction to the humanities through an investigation of important changes in our culture associated with Darwin's theory of evolution. Readings drawn from literature, philosophy and science. Prerequisite: Satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

HUM 106
Life Stories
An interdisciplinary study of autobiographies, written chiefly by Americans. The syllabus varies, but may include Benjamin Franklin, Harriet Jacobs, Maya Angelou, Malcolm X, Langston Hughes, Richard Rodriguez, Thomas Merton, Frank Lloyd Wright and Judy Chicago. In addition to considering autobiography as a genre, the course examines the historical events and the philosophical issues that have shaped the lives and attitudes of these writers. Prerequisite: Satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

HUM 315
Creativity in Art, Science and Technology
An exploration of processes of creative thinking and action across the fields of art, science and technology. The course examines creative cognitive styles, creativity in individuals, and the dynamics of creative groups. It aims to discover patterns of thought or techniques that can enhance creativity. Emphasis is on student projects. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

Interprofessional Projects

IPRO 297, 397, 497
Interprofessional projects allow students to learn teamwork, leadership and project management skills while working in multidisciplinary teams on projects involving technical, ethical, environmental, economic, public policy and legal issues. IPRO project teams are typically comprised of six to 10 students from sophomore through graduate level and from all disciplines, who can broadly contribute to a project effort. While every effort will be made to accommodate students' first choices, it may be necessary to balance students across all projects scheduled for the semester or to consolidate students into fewer projects to meet minimum team requirements. Specific rules about selection of IPRO projects may apply in certain degree programs. Some projects may carry humanities or social sciences credit. Students must consult the lead faculty member for the project and their faculty adviser before registering for a project. (1-6-3) (C)

Literature

UT 306
Science Fiction: I
A treatment of select science fiction texts in terms of how they reflect shifting forms of work and social life in the 20th century. The course will focus on how these texts translate shifts in social patterns and popular entertainment. Equivalent to ENGL 376. Prerequisite: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

UT 307
Science Fiction: II
An investigation of science fiction novels and what they tell us about our conceptions of nature and technology, and about the possible outcomes for our cultural and technological processes. We will ask how these novels connect environmental or ecological themes with political and economic ones. Equivalent to ENGL 377. Prerequisite: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

UT 309
Short Fiction
A formal and thematic analysis of a diverse selection of works of short fiction. The selection will be announced by the instructor when the course is scheduled. Equivalent to ENGL 339. Prerequisite: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

UT 315
The Novel
Analysis of the novel as a literary form with attention to its place in ongoing cultural and political discourse. Equivalent to ENGL 345. Prerequisite: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

UT 317
The Novel Today
An examination of major world fiction since World War II. Readings will be chosen from such writers as Graham Greene, Alexander Solzhenitsyn, Heimrich Boll, Saul Bellow, Robertson Davies, Gabriel Marquez, Nadine Gordimer, Toni Morrison and Salman Rushdie. Equivalent to ENGL 347. Prerequisite: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

UT 322
Work, Worker and the Workplace: Changing Images in Literature and the Arts
An investigation of the changing images of work, workers, and the workplace from the 1890s to the 1990s. The course addresses the representation of both technological and social change in fiction, poetry, and art. Equivalent to ENGL 362.
Prerequisite: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

LIT 326
World Literatures
Contemporary networks of global capital and information technologies provide the motivation for the reading strategies of this course. The course will examine literary texts from a variety of global contexts from the perspectives of globalization and nationalism. Equivalent to ENGL 356. Prerequisite: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

LIT 328
Poetry
Study of poetry and imaginative prose, including an analysis of the theoretical, literary, and sociocultural contexts of these works. The course may include creative writing by students. Equivalent to ENGL 348. Prerequisite: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

LIT 337
Shakespeare: Early Work
Study of Shakespeare’s work before 1600, focusing on the histories, early comedies and tragedies. Close reading of the plays’ language and form, and emphasis on the place of drama in early modern culture. Syllabus varies but is likely to include Taming of the Shrew, Much Ado About Nothing, Parts 1 and 2 of Henry IV, Henry V, Hamlet. Equivalent to ENGL 337. Prerequisite: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

LIT 338
Shakespeare: Late Work
Study of Shakespeare’s work after 1600, focusing on the middle and late comedies and tragedies and the romances. Close reading of the plays’ language and form, and emphasis on the place of drama in early modern culture. Syllabus varies but is likely to include Twelfth Night, Macbeth, Coriolanus, Othello, King Lear, The Winter’s Tale and The Tempest. May be taken independently of ENGL 337. Equivalent to ENGL 338. Prerequisite: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

LIT 340
World Drama
A study of major world dramatists. The syllabus varies, but may include works by Sophocles, Lope de Vega, Marlowe, Shakespeare, Moliere, Goethe, Ibsen, Soyinka and others. Equivalent to ENGL 340. Prerequisite: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

LIT 341
Modern Drama
Study of major dramatists and movements in the theater since Ibsen and Strindberg, with special emphasis on such writers as Chekhov, Shaw, Brecht, O’Neill, Ionesco and Pinter. Equivalent to ENGL 341. Prerequisite: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

LIT 342
Theater in Chicago
Designed to introduce students to the variety of professional theater performances in and around Chicago. Main emphasis is on seeing plays, ancient to contemporary; essays and oral reports; study of dramatic genres and theater history. Equivalent to ENGL 342. Prerequisite: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

LIT 343
Film Analysis
Examination of the style and language of film as shown in a number of feature films, with emphasis on the various ways individual directors use the cinema for personal and cultural ends. Equivalent to ENGL 343. Prerequisite: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

LIT 344
Visual Culture: Television
The course examines the history of television programming from its origins to the present day. It studies the range of critical methods used to analyze television, including accounts of the standard time slot, the star system, and the television advertisement. The course investigates a range of television formats, including televised drama, presidential debates, weekly series, daily soaps, specials, and televised sports. Prerequisite: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

LIT 351
Nineteenth-Century American Literature
Study of representative works of such writers as Franklin, Poe, Emerson, Hawthorne, Melville, Whitman, Twain, Chopin and Dickinson. Equivalent to ENGL 351. Prerequisite: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

LIT 353
Writing in Black
An examination of works by Toni Morrison, Paule Marshall, W.E.B. DuBois, Richard Wright and other black writers. The course includes formal and ideological analysis, emphasizing both nationalism and transnationalism in black culture. Equivalent to ENGL 353. Prerequisite: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

LIT 360
Chicago in Literature
A survey of great American novelists, poets and dramatists who have lived and worked in Chicago from the time of the Great Fire to the present day, and who have made Chicago one of the great world literary centers. Writers discussed include such figures as Theodore Dreiser, Carl Sandburg and Richard Wright. Equivalent to ENGL 360. Prerequisite: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)
LIT 366
Twentieth-Century American Literature
Study of such writers as Steinbeck, Frost, Eliot, Anderson, O’Neill, Hemingway, Cather, Wolfe, Faulkner and contemporary writers such as Updike and Toni Morrison. Equivalent to ENGL 366. Prerequisite: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

LIT 371
Middle English and Renaissance Literature
Study of English literature from its beginnings -- both oral and written -- through the early 17th Century, in times of linguistic change, political revolutions, nation-building and burgeoning empire. Reading list varies but is likely to include Arthurian romance, the Gawain poet, Chaucer, Margery Kempe, Medieval Drama, Spenser, Marlowe, Shakespeare, Elizabeth Carey, John Webster (and other Elizabethan and Jacobean poets and playwrights), John Donne and John Milton. Equivalent to ENGL 371. Prerequisite: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

LIT 372
Restoration and Eighteenth-Century Literature
Study of English Literature in the Age of Enlightenment, from the late 17th to the late 18th century. Reading list varies but may include Donne, Milton, Bunyan, Behn, Dryden, Swift, Pope, Johnson, Boswell, Burke, Reynolds and Sterne. Equivalent to ENGL 372. Prerequisite: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

LIT 373
The Romantic Rebellion and Its Aftermath
The foundations of modernism growing out of the upheaval that brought forth the poetry of Wordsworth, Keats and Shelley, and a new vision of an industrialized world in the works of Dickens, Carlyle, Ruskin and Tennyson. Equivalent to ENGL 373. Prerequisite: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

LIT 374
Twentieth-Century British Literature
Study of such writers as Shaw, Yeats, Woolf, Joyce, Huxley, Auden, Spender and Thomas. Equivalent to ENGL 374. Prerequisite: A 100-level humanities course and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

LIT 411
Workshop in Creative Writing
A workshop demonstrating principles of composition in fiction, poetry or drama, studied from a writer’s vantage point. Works by modern authors are analyzed. Student manuscripts are discussed and evaluated. Equivalent to ENGL 411. Prerequisite: A 100-level humanities course and junior standing. (3-0-3) (H) (C)

LIT 480
Special Topics in Shakespeare
An independent research project or small-group seminar addressing a particular Shakespearean work or theme, to be arranged in advance with the instructor. Enrollment limited. Equivalent to ENGL 480. Prerequisite: LIT 337 or LIT 338, a 100-level humanities course, and satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

MATH 119*
Geometry for Architects
Basic analytic geometry in two and three dimensions; trigonometry. Equations of lines, circles and conic sections; resolution of triangles; polar coordinates. Equations of planes, lines and quadratic surfaces. Applications. (3-0-3) (C)

MATH 122*
Introduction to Calculus
Basic concepts of calculus of a single variable; limits, derivatives and integrals. Applications. Credit may not be granted for both MATH 122 and MATH 123. (3-0-3)

MATH 123*
Applied Mathematics
Basic concepts of calculus of single variable: limits, derivatives, integrals. Applications. Systems of linear equations and matrices. Linear programming. Credit may not be granted for both MATH 122 and MATH 123. (4-0-4)

MATH 148*
Calculus/Precalculus I
Review of algebra and analytic geometry. Functions, limits and derivatives. Trigonometry, trigonometric functions and their derivatives. Chain rule, implicit and inverse functions, and inverse trigonometric functions. (4-0-4)

MATH 149
Calculus/Precalculus II
Applications of derivatives: related rates, maxima and minima, monotonicity, concavity, graphing, and optimization. Antiderivatives, first-order differential equations. Definite integral and applications. Implicit and inverse functions, and inverse trigonometric functions. Prerequisite: Math 148. (4-1-5) (C)

MATH 151
Calculus I
Analytic geometry. Functions and their graphs. Limits and continuity. Derivatives of algebraic, trigonometric and inverse trigonometric functions. Applications of the derivative. Introduction to integrals and their applications. Prerequisite: Placement. (4-1-5) (C)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 152</td>
<td>Calculus II</td>
<td>Transcendental functions and their calculus. Integration techniques. Applications of the integral. Indeterminate forms and improper integrals. Polar coordinates. Numerical series and power series expansions. Prerequisite: Grade of "C" or better in MATH 151 or MATH 149; or Advanced Placement. (4-1-5) (C)</td>
</tr>
<tr>
<td>MATH 161</td>
<td>Honors Calculus I</td>
<td>Functions, limits and continuity. Derivatives of algebraic, trigonometric and inverse trigonometric functions. Implicit functions. Applications of the derivative: rates, graphing and optimization. Introduction to integration. Applications of the integral: area, volume and work. Prerequisite: Placement. (4-1-5) (C)</td>
</tr>
<tr>
<td>MATH 162</td>
<td>Honors Calculus II</td>
<td>Calculus of logarithmic exponential and hyperbolic functions. Integration techniques. Indeterminate forms and improper integrals. Parametric equations. Polar coordinates. Numerical series. Power series expansions. Prerequisite: Grade of "C" or better in MATH 161; advanced placement for MATH 151; or consent of the department. (4-1-5) (C)</td>
</tr>
<tr>
<td>MATH 221*</td>
<td>Basic Probability and Statistics</td>
<td>Introduction to probability and statistics for students in the natural and social sciences or humanities. No calculus background required. Same as MSC 221. (3-0-3)</td>
</tr>
<tr>
<td>MATH 230</td>
<td>Introduction to Discrete Mathematics</td>
<td>Sets, statements and elementary symbolic logic; relations and digraphs; functions and sequences; mathematical induction; basic counting techniques and recurrence. (3-0-3) (C)</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Multivariate and Vector Calculus</td>
<td>Analytic geometry in three-dimensional space. Partial derivatives. Multiple integrals. Vector analysis. Applications. Prerequisite: MATH 152 or MATH 162. (4-0-4)</td>
</tr>
<tr>
<td>MATH 252</td>
<td>Introduction to Differential Equations</td>
<td>Linear differential equations of order one. Linear differential equations of higher order. Series solutions of linear DE. Laplace transforms and their use in solving linear DE. Introduction to matrices. Systems of linear differential equations. Prerequisites: MATH 152 or MATH 162. (4-0-4)</td>
</tr>
<tr>
<td>MATH 332</td>
<td>Matrices</td>
<td>Matrix algebra, rank, inverses; systems of linear equations, determinants; eigenvalues and eigenvectors. Corequisite: MATH 251. (3-0-3)</td>
</tr>
<tr>
<td>MATH 333</td>
<td>Matrix Algebra and Complex Variables</td>
<td>Vectors and matrices; matrix operations, transpose, rank, inverse; determinants; solution of linear systems; eigenvalues and eigenvectors. The complex plane; analytic functions; contour integrals; Laurent series expansions; singularities and residues. Prerequisite: MATH 251. Credit not granted for both MATH 331 and MATH 333. (3-0-3)</td>
</tr>
<tr>
<td>MATH 400</td>
<td>Analysis I</td>
<td>Real numbers, continuous functions; differentiation and Riemann integration. Functions defined by series. Prerequisite: MATH 251 or consent of instructor. (3-0-3)</td>
</tr>
<tr>
<td>MATH 401</td>
<td>Analysis II</td>
<td>Functions of several variables, partial differentiation, and multiple integrals. Prerequisite: MATH 400. (3-0-3)</td>
</tr>
<tr>
<td>MATH 402</td>
<td>Complex Analysis</td>
<td>Analytic functions, conformal mapping, contour integration, series expansions, singularities and residues, and applications. Intended as a first course in the subject for students in the physical sciences and engineering. Prerequisite: MATH 251. (3-0-3)</td>
</tr>
<tr>
<td>MATH 405</td>
<td>Introduction to Iteration and Chaos</td>
<td>Functional iteration and orbits, periodic points and Sharkovsky’s cycle theorem, chaos and dynamical systems of dimensions one and two. Julia sets and fractals, physical implications. Prerequisites: MATH 251; MATH 252; one of the following: MATH 331, MATH 332, or MATH 333, or consent of the instructor. (3-0-3) (C)</td>
</tr>
<tr>
<td>MATH 430</td>
<td>Applied Algebra</td>
<td>Relations; partially ordered sets; semigroups and groups; modular arithmetic; rings and fields. Applications to scheduling, decision making and an introduction to coding theory. Prerequisite: MATH 252. (3-0-3)</td>
</tr>
<tr>
<td>MATH 445</td>
<td>Mathematical Logic</td>
<td>Models of languages; propositional, Aristotelian, and predicate logic; and formal theories. Prerequisite: CS 330 or consent of instructor. (3-0-3)</td>
</tr>
<tr>
<td>MATH 453</td>
<td>Combinatorics</td>
<td>Permutations and combinations; pigeonhole principle; inclusion-exclusion principle; recurrence equations and generating functions; combinatorial designs. Prerequisite: MATH 230. (3-0-3)</td>
</tr>
<tr>
<td>MATH 454</td>
<td>Graph Theory and Applications</td>
<td>Graph theory is the study of systems of points with some of the pairs of points joined by lines. Sample topics include: paths, cycles and trees; adjacency and connectivity; directed graphs; Hamiltonian and Eulerian graphs and digraphs; intersection graphs. Applications to the sciences (computer, life, physical, social) and engineering will be introduced throughout the course. Prerequisite: MATH 251 or MATH 252. (3-0-3)</td>
</tr>
</tbody>
</table>
MATH 461
Fourier Series and Boundary-Value Problems
Fourier series and integrals. The Laplace, heat, and wave equations: Solutions by separation of variables. D’Alembert’s solution of the wave equation. Boundary-value problems. Prerequisites: MATH 251, MATH 252. (3-0-3)

MATH 471
Numerical Methods I
Number representation; errors; iterative methods for nonlinear equations; polynomial interpolation; differentiation; integration; Gauss elimination. Prerequisites: Familiarity with Fortran, MATH 251, MATH 252. Corequisite: MATH 331, MATH 332 or MATH 333. (3-0-3)

MATH 472
Numerical Methods II
Numerical solution of differential equations such as Euler, Runge-Kutta, Predictor-Corrector, shooting methods, finite differences, Crank Nicholson, and finite elements. Prerequisites: MATH 251, MATH 252. (3-0-3)

MATH 473
Numerical Linear Algebra
Fundamentals of matrix theory; least squares problems; conditioning and stability; direct and iterative methods for linear systems; and eigenvalue problems. Computer assignments will be done in Matlab. Prerequisite: MATH 252, MATH 331, MATH 332 or MATH 333. (3-0-3)

MATH 474
Probability and Statistics
Elementary probability theory including discrete and continuous distributions, sampling, estimation, confidence intervals, hypothesis testing and linear regression. Prerequisite: MATH 251. Credit not granted for both MATH 474 and MATH 475. (3-0-3)

MATH 476
Statistics
Estimation theory; hypothesis tests; confidence intervals; goodness-of-fit tests; correlation and linear regression; analysis of variance; nonparametric methods. Prerequisite: MATH 475. (3-0-3)

MATH 482
Introduction to Markov Processes
Random walks, discrete time Markov chains; Poisson processes, continuous time Markov chains; renewal theory. Prerequisite: MATH 475. (3-0-3)

MATH 483
Design and Analysis of Experiments
Principles of estimation; hypothesis tests, confidence intervals. Contingency tables; goodness-of-fit. Analysis of variance; linear regression. Hierarchical and split-plot designs; analysis of covariance. Multiple regression. Prerequisite: MATH 221 or MATH 476. (3-0-3)

MATH 484
Mathematical Modeling I
A general introduction to optimization problems. Linear programming: the simplex method. Elements of graphs and networks. Introduction to game theory. Applications. Prerequisite: MATH 475 or consent of the instructor. (3-0-3) (C)

MATH 485
Mathematical Modeling II
The formulation of mathematical models, solution of mathematical equations, and interpretation of results. Selected topics from queueing theory and financial derivatives. Prerequisite: MATH 252. (3-0-3) (C)

MATH 486
Ordinary Differential Equations
Boundary-value problems: Green’s functions, Strum-Liouville theory, eigenfunction expansions. Linear and nonlinear systems: existence and uniqueness, Floquet theory, stability concepts. Phase-plane analysis: critical points, limit cycles. Prerequisite: MATH 252. (3-0-3)

MATH 487
Partial Differential Equations
First-order equations, characteristics. Classification of second-order equations. Laplace’s equation: potential theory, Green’s function, maximum principles. The wave equation: characteristics, general solution. The heat equation: use of integral transforms. Prerequisite: MATH 461. (3-0-3)

MATH 491
Reading and Research
Credit: Variable

Management

MGT 351
Theory of Organization and Management
Introduction to the theory and practice of management; includes the basic managerial functions: planning, organizing, leading and controlling. Communication, motivation and decision-making techniques are stressed. Also covered are organization structure and design, the dynamics of individual and group interaction, organization climate, managerial styles, the implications of increasing work force diversity, coping with conflict, and methods for achieving organizational improvement. Issues in international business are dealt with at relevant points. Prerequisite: Junior standing. (3-0-3)

Military Science

MILS 101
U.S. Defense Establishment
Discussion and practical application of fundamentals, principals and traits of leadership. An introduction to the history and practical application of the U.S. Army customs and traditions. A practical laboratory is required for Army ROTC cadets. (1-2-1) (C)

MILS 102
Customs and Traditions of the Military
An examination of the nation’s defense establishment. Emphasis is placed on the structural aspects and the authority relationships of the
Department of Defense and the Department of the Army; constitutional provisions for the common defense; and the concept of civilian control of the military. A practical laboratory is required for Army ROTC cadets. (1-2-1) (C)

MILS 107
American Military History
In-depth study of American military history through examination of evolution of the Army and warfare. (3-2-3)

MILS 147, 148, 247, 248, 347, 348, 447, 448
Aerobic Conditioning
Participation in aerobic exercise program; evaluation of the level of cardiovascular fitness. (0-3-2)

MILS 201
Fundamentals of Leadership, Organization and Planning
Study and practical application of basic leadership techniques to include motivating and counseling. Emphasis on communication skills to include oral presentations and the Army writing style. A practical laboratory is required for Army cadets. (2-2-2)

MILS 202
Leadership Dynamics
Analytical study of American military history from its origin through the present. Emphasis on leadership, strategy, the principles of war, and growth of the military in the United States. A practical laboratory is required for Army ROTC cadets. (3-2-3)

MILS 301
Military Operations and Tactics
Introduction to the principles of war; practical exercises in small unit leadership and combined arms operations. Study of land navigation techniques and field communications equipment operating procedures with actual field application. A practical laboratory is required for Army ROTC cadets. Prerequisites: MILS 101; MILS 102; MILS 201 or the equivalent; and department approval. (3-2-3) (C)

MILS 302
Organizational Leaders
Detailed study of Army tactical combat doctrine to include organization, patrolling, offensive and defensive tactics at the small unit level. Advanced techniques of planning, organization, delegation and control with practical application. A practical laboratory is required for Army ROTC cadets. Prerequisites: MILS 101; MILS 102; MILS 201 or the equivalent; and department approval. (3-2-3)

MILS 401
Training and Resource Management
Nature of command and staff relationships; theory and application of U.S. Army training management doctrine; operations and intelligence functions; professional ethics. A practical laboratory is required for Army ROTC cadets. Prerequisites: MILS 101, MILS 102; MILS 201 or the equivalent; and department approval. (3-2-3) (C)

MILS 402
Military Law
Study of the nature, structure, powers and procedures of the military justice system; reserve components of the Army; senior and subordinate relationships; obligations and responsibilities of an officer on active duty. A practical laboratory required for Army ROTC cadets. Prerequisites: MILS 101; MILS 102; and MILS 201 or the equivalent; and department approval. (3-2-3) (C)

MILS 499
Advanced Independent Research
Intensive research and study of selected topics. May be repeated for a maximum of six credit hours. A practical laboratory is required for Army ROTC cadets. Prerequisite: Department approval. (Credit: 1-4 hours)

Marketing

MKT 371
Marketing
Introduction to the activities and decisions faced by marketing managers in modern organizations. Topics include: consumer and organizational buying behavior, marketing research, market segmentation, new product development, product line decisions, pricing channels, distribution, promotion, international marketing, and introduction to marketing strategic planning. (3-0-3) Offered in fall and spring.

Mechanical, Materials and Aerospace Engineering

MMAE 100
Introduction to the Profession I
Introduces the student to the scope of the engineering profession and its role in society, develops a sense of professionalism in the student, confirms and reinforces the student’s career choices, and provides a mechanism for regular academic advising. Provides integration with other first-year courses. Applications of mathematics to engineering. Emphasis is placed on the development of professional communications and teamwork skills. (1-4-3) (C)

MMAE 101
Introduction to the Profession II
Continuation of MMAE 100, primarily through short projects. Prerequisite: MMAE 100. (1-4-3) (C)

MMAE 200
Introduction to Mechanics
MMAE 201
Mechanics of Solids I

MMAE 202
Mechanics of Solids II

MMAE 271
Engineering Materials and Design
Mechanical behavior of metals, polymers, ceramics and composites, laboratory testing methods including tension, torsion, hardness, impact, toughness, fatigue and creep. Evaluation of structural performance in terms of material processing, service conditions and design. Prerequisites: MS 201, MMAE 201. Corequisite: MMAE 202. (2-3-3) (C)

MMAE 303
Mechanics of Solids III

MMAE 304
Mechanics of Aerostructures

MMAE 305
Dynamics

MMAE 310
Fluid Mechanics
Basic properties of fluids in motion. Lagrangian and Eulerian viewpoints, material derivative, streamlines, etc. Continuity, energy and linear and angular momentum equations in integral and differential forms. Integration of equations for one-dimensional flows and application to problems. Incompressible viscous flow; Navier-Stokes equations, parallel flow, pipe flow, and the Moody diagram. Introduction to laminar and turbulent boundary layers and free surface flows. Lab Component: Introduction to measurements of fluid properties and basic features of fluid flow; flow through pipes and channels, flow-induced forces on bodies; Conservation of energy; six laboratory experiments in small groups supplemented by demonstrations and films. Prerequisites: MATH 251, MATH 252. Corequisites: MMAE 305, MMAE 320. (3-0-3) (C)

MMAE 311
Compressible Flow

MMAE 312
Aerodynamics of Aerospace Vehicles
Analysis of aerodynamic lift and drag forces on bodies. Potential flow calculation of lift on two-dimensional bodies; numerical solutions; source and vortex panels. Boundary layers and drag calculations. Aerodynamic characteristics of airfoils; the finite wing. Prerequisites: MMAE 310, MMAE 320, MMAE 350. (3-0-3)

MMAE 313
Fluid Mechanics
Same as MMAE 310 without the laboratory component. Prerequisites: MMAE 305, MATH 251, MATH 252. Corequisite: MMAE 320. (3-0-3)

MMAE 320
Thermodynamics
Introduction to thermodynamics including properties of matter; First Law of Thermodynamics and its use in analyzing open and closed systems; limitations of the Second Law of Thermodynamics; entropy. Prerequisites: CHEM 124, PHYS 224, MATH 251. Corequisite: MATH 252. (3-0-3)

MMAE 321
Applied Thermodynamics
Analysis of thermodynamic systems, including exergy analysis; analysis and design of power and refrigeration cycles; gas mixtures and chemically reacting systems; chemical equilibrium; combustion and fuel cells. Prerequisites: MMAE 320, MATH 251. Corequisite: MMAE 310. (3-0-3)

MMAE 322
Heat and Mass Transfer
Basic laws of transport phenomena, including: steady-state heat conduction; multi-dimensional and transient conduction; forced internal and external convection; natural convection; heat exchanger design and analysis; fundamental concepts of radiation; shape factors and network analysis; diffusive and convective mass transfer; phase change, condensation and boiling. Lab component: one-dimensional steady-state conduction; multi-dimensional steady-state conduction; convection; heat exchanger analysis; radiation; phase change. Six laboratory experiments in small groups. Prerequisites: MMAE 320, MMAE 310, MMAE 350. (3-0-3) (C)
MMAE 350
Computational Mechanics
Explores the use of numerical methods to solve engineering problems in solid mechanics, fluid mechanics and heat transfer. Topics include matrix algebra, nonlinear equations of one variable, systems of linear algebraic equations, nonlinear equations of several variables, classification of partial differential equations in engineering, the finite difference method, and the finite element method. Prerequisites: CS 105, MATH 251, MATH 252, MMAE 202. (3-0-3)

MMAE 361
Fundamentals of Crystalline Solids
Imperfections in metals and ceramics. Dislocations and plastic deformation. The thermodynamic and kinetic principles of binary phase diagrams. Diffusion. Solidification. Prerequisites: MS 201, MMAE 271. (3-0-3)

MMAE 362
physics of Solids

MMAE 363
Metallurgical and Materials Thermodynamics
The three laws of thermodynamics. Extensive problem solving in metallurgical and materials applications of heat and mass balances, free-energy criteria, and equilibrium relations. Prerequisite: MS 201. (3-0-3)

MMAE 370
Materials Laboratory I
Introduction to materials characterization techniques including specimen preparation, metallography, optical and scanning electron microscopy, temperature measurement, data acquisition analysis and presentation. Corequisite: MMAE 271. (1-6-3) (C)

MMAE 406
Mechanical Vibrations
Study of free, forced and damped vibrations of single degree of freedom mechanical systems: resonance, critical damping, and vibration isolation. Two degree of freedom systems: natural frequencies, normal modes, resonances and vibration absorbers. Introduction to vibrations of multiple degree of freedom. Prerequisites: MMAE 305, MMAE 350. (3-0-3) (C)

MMAE 407
Biomechanics: Solids

MMAE 423
Air Conditioning and Refrigeration
Environmental control for winter and summer; elements of psychrometrics, load calculations. Space heating and cooling methods; extended surface coils; absorption refrigeration; system analysis and planning. Prerequisites: MMAE 321, MMAE 322. (3-0-3)

MMAE 424
Internal Combustion Engines
Fundamentals of spark ignition and diesel engines. Combustion knock and engine variables; exhaust gas analysis and air pollution; carburetion; fuel injection; lubrication; engine performance; vehicle performance. Engine balance and vibrations. Electronic control. Prerequisites: MMAE 321, MMAE 322. (3-0-3)

MMAE 425
Direct Energy Conversion
A study of various methods available for direct conversion of thermal energy into electrical energy. Introduction to the principles of operation of magnetohydrodynamic generators, thermo-electric devices, thermionic converters, fuel cells and solar cells. Prerequisites: MMAE 321, PHYS 208. (3-0-3)

MMAE 430
Engineering Measurements
Introduction to applications of measurement instrumentation and design of engineering experiments. Generalized characteristics of sensors and measurements systems. Signal conditioning and computer-based data acquisition and analysis. Measurement of motion, force, strain, torque, shaft power, pressure, sound, flow, temperature and heat flux. Design of experiments proposals. Team-based projects addressing application of engineering measurements to a variety engineering problems. Effective communication of experimental results. Prerequisite: PHYS 300. (2-6-4) (C)

MMAE 431
Design of Machine Elements
Design factors and fatigue. Application of principles of mechanics to the design of various machine elements such as gears, bearings, clutches, brakes and springs. Prerequisite: MMAE 303. (2-3-3)

MMAE 432
Design of Mechanical Systems
Small-group design projects drawn from industry. Prerequisite: MMAE 431. (1-6-3) (C)

MMAE 433
Design of Thermal System
Application of principles of fluid mechanics, heat transfer, and thermodynamics to design of components of engineering systems. Examples are drawn from power generation, environmental control, air and ground transportation, and industrial processes, as well as other industries. Groups of students work on projects for integration of these components and design of thermal systems. Prerequisites: MMAE 321, MMAE 322. (2-3-3) (C)

MMAE 434
Design for Mechanical Reliability
Reliability and hazard functions; statistics and dynamic reliability models for series, parallel and complex systems; reliability allocation. Probabilistic design; stress and strength distribu-
tions; safety factors; loading random variables; geometric tolerances, linear and nonlinear dimensional combinations; stress as random variable; material properties as random variables; failure theories; significant stress-strength models; reliability confidence intervals. Prerequisite: MMAE 431. (3-0-3)

MMAE 435

Design for Safety in Machines
A critical study of the interface between law and safety engineering, which embraces not only statutory law, such as OSHA and the Consumer Products Safety Act, but also case law arising from product liability suits. Detailed analysis of actual industrial and consumer accidents from the investigative stages through their litigation. Formulation of general safety design techniques for mechanical engineering systems and the development of courtroom communication skills for expert witnesses. Prerequisite: Senior standing. (3-0-3)

MMAE 436

Design of Aerospace Vehicles
Aircraft design including aerodynamic, structural, and powerplant characteristics to achieve performance goals. Focus on applications ranging from commercial to military and from manpowered to high-speed to long-duration aircraft. Semester project is a collaborative effort in which small design groups complete the preliminary design cycle of an aircraft to achieve specific design requirements. Prerequisites: MMAE 304, MMAE 311, MMAE 312. (2-3-3) (C)

MMAE 440

Introduction to Robotics
Classification of robots; kinematics and inverse kinematics of manipulators; trajectory planning; robot dynamics and equations of motion; position control. Prerequisite: MMAE 305, PHYS 300. (3-0-3)

MMAE 441

Spacecraft and Aircraft Dynamics
Kinematics and dynamics of particles, systems of particles, and rigid bodies; translating and rotating reference frames; Euler angles. Aircraft longitudinal and lateral static stability; aircraft equations of motion. Spacecraft orbital dynamics; two-body problem classic orbital elements; orbital maneuvers. Prerequisite: MMAE 312. (3-0-3)

MMAE 442

Aircraft and Spacecraft Response and Control
Aircraft lateral modes of motion and approximations; the yaw damper. Aircraft response to control and external inputs; introduction to automatic control. Spacecraft attitude control devices, gyroscopic instruments, momentum exchange and mass movement techniques, gravity gradient stabilization. Introduction to spacecraft automatic attitude control systems. Prerequisite: MMAE 441. (3-0-3)

MMAE 443

Systems Analysis and Control
Mathematical modeling of dynamic systems; linearization. Laplace transform; root locus method for control-system design. Frequency-response methods; Bode plots; Nyquist stability criterion. Prerequisite: MMAE 305. (3-0-3)

MMAE 444

Design for Manufacture
The materials/design/manufacturing interface in the production of industrial and consumer goods. Material and process selection; process capabilities; modern trends in manufacturing. Life cycle engineering; competitive aspects of manufacturing; quality, cost, and environmental considerations. Prerequisite: MMAE 485 or equivalent. (3-0-3)

MMAE 445

CAD/CAM with Numerical Control
Computer graphics in engineering design and CAD software and hardware. Numerical control of machine tools by various methods. Prerequisite: CS 105, MATH 252. (3-0-3)

MMAE 451

Finite Element Methods in Engineering

MMAE 452

Aerospace Propulsion
Analysis and performance of various jet and rocket propulsive devices. Foundations of propulsion theory. Design and analysis of inlets, compressors, combustion chambers, and other elements of propulsive devices. Emphasis is placed on mobile power plants for aerospace applications. Prerequisites: MMAE 311. (3-0-3)

MMAE 464

Physical Metallurgy
Principles of microstructure evolution with emphasis on phase transformations in metals and alloys. Processing-microstructure-property relationships. Fundamentals of alloy design for commercial applications. Prerequisite: MMAE 361. (3-0-3)

MMAE 465

Electrical, Magnetic and Optical Properties of Materials
Electronic structure of solids, semiconductor devices and their fabrication. Ferroelectric and piezoelectric materials. Magnetic properties, magnetocrystalline anisotropy, magnetic materials and devices. Optical properties and their applications, generation and use of polarized light. Same as ECE 435. Prerequisite: ECE 311 or MMAE 362. (3-0-3)

MMAE 466

Microstructural Characterization of Materials
Advanced optical microscopy. Scanning and transmission electron microscopes. X-ray microanalysis.
MMAE 467
Fundamental Principles of Polymeric Materials
An overview of the basic principles of polymeric materials. Topics discussed include types of polymers; methods of polymer synthesis, structure and morphology, and their relationship to properties; and basic polymer processing methods. (3-0-3)

MMAE 468
Introduction to Ceramic Materials
The structure and structure/properties relationships of ceramic materials. Topics include: crystal structure types; crystal defects; structure of glass; phase equilibria and how these affect applications for mechanical properties; electrical properties; and magnetic properties. Sintering and ceramic reactions are related to microstructure and resultant properties. Prerequisite: MS 201. (3-0-3)

MMAE 472
Ferrous Technology
Consideration of the basic mass and energy balances involved in the production of ferrous materials in integrated mills and in mini-mills. Historical overview of significant developments in primary steelmaking. Prerequisite: MMAE 363. (3-0-3)

MMAE 473
Corrosion
Theory and prevention of corrosion of metals, including oxidation, sulfidation, other atmospheric attacks, aqueous corrosion, and other topics. Prerequisite: MMAE 361. (3-0-3)

MMAE 474
Metals Processing
The principles and practice of (a) melting and casting processes; sand, die, investment, evaporative mold, and permanent mold casting processes; and (b) the heat treatment of carbon and low alloy steels, stainless steels, tool steels, cast irons, and selected non-ferrous alloys including titanium, aluminum and nickel base alloys. Prerequisite: MMAE 464. (2-3-3) (C)

MMAE 475
Powder Metallurgy
Production, pressing and sintering of metal powders. Effects of particle size, friction and die design on pressed densities. Theories of sintering. Relation of sintering practice to physical properties. Homogenization of alloys. Industrial equipment. Applications. Laboratory simulation of a series of P/M manufacturing cycles from powder to finished product are used to reinforce the classwork. Prerequisite: MMAE 361. (2-3-3) (C)

MMAE 476
Materials Laboratory II
Advanced synthesis, processing and characterization of metallic, non-metallic and composite materials. Experimental investigation of relationships between materials structures, processing routes and properties. Design of experiments/statistical data. Prerequisite: MMAE 370 or instructor’s consent. (1-6-3)

MMAE 477
Commercial Alloys
Classification of the commercially significant groups of ferrous and non-ferrous alloys. Mechanical, chemical and physical behavior; the relationship to basic structure-property principles. The significance of the various alloy groups in engineering practice. Prerequisite: MMAE 464. Corequisite: MMAE 474. (3-0-3)

MMAE 478
Service Failure Analysis
Theory and analyses of materials failures. Prerequisite: Consent of instructor. (2-3-3)

MMAE 480
Forging and Forming
Mechanical and metallurgical basis for successful production of forgings and stampings. Forming limits, mechanical instability, plastic anisotropy, yielding and plastic flow rules. Prerequisite: Instructor’s consent. (3-0-3)

MMAE 481
Introduction to Joining Processes
An introduction to principles and processes for joining similar and dissimilar materials. Emphasis is given to fusion processes. Prerequisite: Instructor’s consent. (3-0-3)

MMAE 482
Composites
This course focuses on metal, ceramic and carbon matrix composites. Types of composite. Synthesis of precursors. Fabrication of composites. Design of composites. Mechanical properties and environmental effects. Applications. (3-0-3)

MMAE 483
Structure/Property Relationship in Polymers
Detailed study of the relationship between polymer structure, morphology and properties. Topics include theories of rubber elasticity, the glassy state, semi-crystalline structure, and polymer melts. Effects of molecular weight and different types of intermolecular interactions are presented. (3-0-3)

MMAE 484
Materials and Process Selection

MMAE 485
Manufacturing Processes
Principles of material forming and removal processes and equipment. Force and power requirements, surface integrity, final properties and dimensional accuracy as influenced by material properties and process variables. Design for manufacturing. Factors influencing choice of manufacturing process. Prerequisite: MMAE 271. (3-0-3)

MMAE 486
Properties of Ceramics
Thermal, optical, mechanical, electrical and magnetic properties of ceramics and their applications. Includes a review of defect equilibria and ceramic microstructures. Prerequisites: MS 201, MMAE 361. (3-0-3)

MMAE 487
Fiber Reinforced Polymeric Composite Materials
The materials, structure and fabrication methods for fiber reinforced polymeric composites will be discussed.
Materials Science

MS 201
Materials Science
The scientific principles determining the structure of metallic, polymeric, ceramic, semiconductor and composite materials; electronic structure, atomic bonding, atomic structure, microstructure and macrostructure. The basic principles of structure-property relationships in the context of chemical, mechanical and physical properties of materials. Prerequisite: CHEM 124. (3-0-3)

Manufacturing Technology and Management

MT 301
Communications for the Workplace
Review, analyze and practice verbal and written communication formats found in the workplace. Emphasis on developing skills in technical writing, oral presentations, business correspondence, and interpersonal communication using electronic and traditional media. Credit not granted for both MT 301 and ENGL 421. (3-0-3) (C)

MT 305
Advances in Information Technology
Management in a manufacturing environment now requires a fundamental understanding of information technology. Topics addressed are relevant to planning, operations and control of information technology in a manufacturing organization, including converging network deployments, wireless applications, data modeling, production modeling, security and the impact of e-commerce. Computer exercises will be included. (3-0-3)

MT 313
Materials in Manufacturing
Introduction to solid materials, including metals, plastics and natural materials. Mechanical, physical and electrical properties of metals will be considered as they relate to engineering applications and manufacturing. Product integrity and environmental aspects, such as disposal, human acceptance and economic considerations. (3-0-3)

MT 315
Manufacturing Enterprises
This course provides an introduction to the world of manufacturing. The world-wide evolution of manufacturing will be considered, leading to today's competitive world. The range of manufacturing activities will be reviewed. The students will be introduced to the organization and purpose of manufacturing. (3-0-3)

MT 319
Electronics in Manufacturing
This course covers electronics and electrical technology in manufacturing, covering electrical and electronic components, industrial devices, electrical theory, application and basic troubleshooting. Prerequisite: MT 305. (3-0-3)

MT 321
Computer-Integrated Manufacturing
Explores application of computer systems to manufacturing processes, such as production planning and control, product design, and quality control. Prerequisite: MT 305. (3-0-3)

MT 323
Manufacturing Management and Planning
This course introduces students to various concepts of management, specifically as applicable to manufacturing companies. Management of people and organization will be considered, as well as concepts of forecasting and strategic planning. Prerequisites: MT 301, MT 305, MT 315. (3-0-3) (C)
MT 331
Product Design in Manufacturing
The array of products resulting from manufacturing mandates close attention to the relationship between product design and other plant operations. This course will introduce product design and principles, such as value, structure, and image, as well as such areas as design planning and computer applications in design. Prerequisite: MT 305. (3-0-3) (C)

MT 404
Sales, Marketing and Product
Introduction in Manufacturing
Techniques of marketing research; strategies for new product introduction; and sales management and planning. Prerequisite: MT 323. (3-0-3) (C)

MT 406
Quality Control in Manufacturing
Topics include quality control based on metrology and overall quality control systems. Metrological techniques covered include mechanical, electrical, materials and chemical perspectives. Such QC issues as SPC, ISO 9000, MilSpec and TQM are examined. Emphasis is on exploring options and consequences of selecting appropriate methodologies. (3-0-3)

MT 412
Manufacturing Processes
Process areas studied include metals, plastics and electronics manufacturing. Key processes in each of these industries are explored, with particular consideration given to interactions between materials and processes, as well as related design issues. Prerequisites: MT 313, MT 315. (3-0-3)

MT 414
Topics in Manufacturing
Students will use this course to capitalize on previous studies to select and complete a “job specific” project. Topics are selected with the approval of the student's employer and MT staff, and presentation of the project report is made to both. Prerequisite: Completion of all 300-level MT courses. (3-0-3) (C)

MT 422
Manufacturing Technology
This course reviews current technologies applied to manufacturing operations. Emphasis is on technologies not included in other courses, such as automated manufacturing, group technology, flexible manufacturing systems, numerical control, robotics and artificial intelligence. Prerequisites: MT 321, MT 412. (3-0-3)

MT 424
Management Information Systems in Manufacturing
Integration of all elements of manufacturing enterprise into a common database is critical to efficiency and profitability. This course details how Management Information Systems (MIS) ties together such operational aspects as order entry, production scheduling, quality control, shipping and collections. Prerequisite: MT 321. (3-0-3)

MT 426
Decision Making and Risk Analysis in Manufacturing
Course presents the range of decision-making and risk analysis theories and procedures, including software systems and management group techniques for determining and prioritizing company decisions related to such areas as products and work force distribution. Prerequisites: MT 323, MT 404, MT 406. (3-0-3) (C)

MT 432
Vendor/Customer Relations in Manufacturing
Relations with customers and vendors constitute a critical aspect of company profitability. The course pursues such topics as appropriate involvement of customers and vendors in product development, as well as price and contract negotiations. Prerequisite: MT 404. (3-0-3)

MT 434
Manufacturing Futures
This course allows a futuristic view of manufacturing of interest to the student and MT staff, who must work to develop individual or group projects. Prerequisite: Completion of all 300-level MT courses. (3-0-3) (C)

Naval Science

NS 101
Introduction to Naval Science
A general introduction to seapower and the naval service. The instruction places particular emphasis on the mission, organization, regulations and broad warfare components of the Navy. Included is an overview of officer and enlisted rank and rating structures, procurement and recruitment, training and education, promotion and advancement, and retirement policies. The course also covers the basic tenets of naval courtesy and customs, discipline, naval leadership and ship’s nomenclature. The student is made cognizant of the major challenges facing today’s naval officer, especially in the areas of human resource management. Prerequisite: Consent of instructor. (2-2-2)

NS 102
Naval Ships Systems
Designed to familiarize midshipmen with the types, structure, and purpose of naval ships. The design of naval ships is examined with respect to safety of operations and ship stability characteristics. Included are nuclear and conventional propulsion systems, auxiliary power systems, interior communications, and basic damage control. Prerequisite: Consent of instructor. (3-2-3) Offered fall semester.

NS 201
Naval Weapons Systems
This course provides an introduction to the theory and principles of operation of naval weapons systems. It includes coverage of types of weapons and fire control systems, capabilities and limitations, theory of target acquisition, identification and tracking, trajectory principles, and basics of naval ordnance. Prerequisite: Consent of instructor. (3-2-3) Offered spring semester.

NS 202
Seapower and Maritime Affairs
A course based on the premise that the student must develop knowledge and interest in seapower and maritime affairs. The course is oriented toward the general concept of seapower (including the merchant
marine), the role of various warfare components of a navy in supporting the Navy’s mission, the implementation of seapower as an instrument of national policy, and a comparative study of U.S. and Soviet naval strategies. Prerequisite: Consent of instructor. (3-2-3) Offered spring semester. (C)

NS 301, 302
Navigation and Naval Operations I, II
A comprehensive study of the theory, principles, and procedures of ship navigation, movement and employment. Competency is achieved in the areas of piloting and celestial and electronic means of shipboard navigation. Operations topics include communications, sonar-radar search and screening theory. Tactical formations and dispositions, relative motion, maneuvering board and tactical plots are analyzed for force effectiveness and unity. Rules of the road, lights, signals and navigational aids are also covered. Prerequisite: Consent of instructor. (3-2-3); (3-2-3)

NS 310
Evolution of Warfare
A survey of all military history designed to provide the student with a basic knowledge of the art and concepts of warfare and its evolution from the beginning of recorded history to the present. Included within this study is a consideration of the influence that leadership, political, economic, sociological and technological factors have had on warfare and the influence they will continue to exert in the age of limited warfare. Prerequisite: Consent of instructor. (3-2-3) (C)

NS 401
Leadership and Management
This course is a comprehensive advanced-level study of organizational behavior and management. Topics include a survey of principal management functions. Major behavioral theories as well as practical applications are explored by the use of experiential exercises, case studies and laboratory discussions. Other topics include decision-making, communication, responsibility, authority and accountability. (2-2-2) (C)

NS 402
Naval Leadership and Ethics
This course discusses ethical considerations in military leadership including the development of common core values among a diverse population and application of those values in the problematic context of the use of military force in support of national policy. A capstone course integrating professional competencies of prior course and training. (3-2-3) (C)

NS 410
Amphibious Warfare
The course is designed to provide the student with a historical survey of the evolution of amphibious warfare. An in-depth survey of amphibious landings is concluded with a study of the development of modern amphibious doctrine. Emphasis is placed on case studies of WW II: Pacific landing operations and Allied landings in North Africa, Northern Europe and Italy. Prerequisite: Consent of instructor. (3-2-3) (C)

Operations Management

OM 312
Introduction to Operations Management
Operational problems studied from a systems viewpoint. Development and application of policies, techniques and models for making decisions in the areas of product and service design, design of operating systems, production and control of the product or service. Prerequisite: Junior standing. (3-0-3) Offered in fall and spring.

Public Administration

PA 501
Introduction to Public Management
Undergraduates may enroll in the following courses with department permission.

PA 502
Complex Organizations
Philosophy

PHIL 301
Ancient Philosophy
A study of major works by Plato, Aristotle and other important ancient philosophers. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 302
Origins of Modern Philosophy
A study of major 17th and 18th century philosophers, such as Descartes, Hobbes, Spinoza, Locke, Leibniz, Berkeley, Hume and Rant. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 304
19th-Century Philosophy
A study of major 19th century philosophers, such as Hegel, Comte, Mill, Peirce, James and Nietzsche. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 305
20th-Century Philosophy
A study of recent philosophical trends (or movements), including logical positivism, existentialism, ordinary language philosophy, etc. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 310
American Philosophy
A survey of the most important thinkers and movements in American philosophy. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 311
Great Philosophers
An in-depth study of a single outstanding philosopher, chosen by the instructor. The focus of the course will be announced when the course is scheduled. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 326
Philosophy of Language
An analysis of the concept of language in both the works of philosophers and the works of linguists. The course looks into theories of linguistic meaning, sentence structure, speech acts and the assumptions underlying research in modern linguistics. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 335
Theory of Knowledge
An inquiry into how knowledge in general is possible, whether we can achieve certainty and the role of reason and experience in the acquisition of knowledge. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 340
Symbolic Logic
An introduction to propositional and predicate calculus, with applications to the theory of language, the concept of argumentation, and the foundations of mathematics. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 341
Philosophy of Science
Through an analysis of the concepts of explanation, theory, hypothesis, experiment and observation, this course seeks an understanding of how the growth of scientific knowledge is possible. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 342
Philosophy of Mind
An examination of the conception of “mind” as opposed to body, and its implications for psychology, artificial intelligence and neuroscience. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 343
Philosophy of Social Inquiry
An examination of the methods and theories of the social sciences, especially sociology, anthropology and their relationships to the natural sciences. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 345
Space and Time
An investigation into philosophical problems of space and time raised by modern physics and geometry. Issues include problems raised by studies of relativity, the topology of space and time, the direction of time, etc. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 350
Science and Method
A history of the interaction between science and philosophy showing how changing conceptions of metaphysics and scientific method have influenced the development of Renaissance astronomy, nineteenth-century atomic theory, ether theories, theories of geological and biological change, etc. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 360
Ethics
A study of the fundamental issues of moral philosophy. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 361
Political and Social Philosophy
An analysis of the concepts of legitimate political authority, social justice, natural rights, sovereignty, etc. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)
PHIL 362
Philosophy of Law
An analysis of the concept of law and how it differs from custom, religion and morality. The course looks into issues of judicial reasoning, the assumptions that underlie the criminal justice system and the imposition of liability, and legal ethics. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 363
Aesthetics
The philosophy of the fine arts, including an analysis of the concepts of beauty, representation, expression and the purpose of art. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 365
Philosophy of Free Speech
Analysis of the philosophical foundations of the right of free speech within the American Constitution's framework. Topics include: the philosophical underpinnings of the right of free speech, judicial review under the Constitution, selected free speech issues such as libel, defamation, speech in the workplace, pornography, flag-burning, and others. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 367
Moral Issues in Engineering
A study of the problems of moral and social responsibility for the engineering profession, including such topics as safety, confidentiality and government regulation. Prerequisite: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 370
Moral Issues in Architecture
Examination of moral problems faced by architects and planners and the concept of professional behavior. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 373
Moral Issues in Business
Ethical issues relating to individual and corporate responsibility, self- and governmental regulation, investment, advertising, urban problems, the environment, and preferential hiring. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 374
Moral Issues in Computer Science
Moral problems that confront professionals in computer-related fields, including questions raised by the concept of intellectual property and its relationship to computer software, professional codes of ethics for computer use, responsibility for harm resulting from the misuse of computers. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 376
Philosophy of Free Speech
An investigation into a topic of current interest in philosophy, which will be announced by the instructor when the course is scheduled. Prerequisites: A 100-level humanities course and satisfaction of IIT's Basic Writing Proficiency Requirement. (3-0-3) (H) (C)

PHIL 490, 491
Independent Study
Supervised individual research for advanced students. Prerequisite: Consent of the department. (Credit: Variable.) (H) (C)

PHYS 100
Introduction to the Profession
Introduction to the physical sciences, scientific method, computing tools and interrelations of physical sciences with chemistry, biology and other professions. (2-0-2) (C)

PHYS 120
Astronomy
A descriptive survey of observational astronomy, the solar system, stellar evolution, pulsars, black holes, galaxies, quasars and the origin and fate of the universe. (3-0-3)

PHYS 123
General Physics I: Mechanics
Vectors and motion in one, two and three dimensions. Newton's Laws. Particle dynamics, work and energy. Conservation laws and collisions. Rotational kinematics and dynamics, angular momentum and equilibrium of rigid bodies. Gravitation, oscillations and waves. Corequisites: MATH 149, MATH 151 or MATH 161. (3-3-4) (C)

PHYS 211, 212
Basic Physics I, II
Intended to give students in the liberal arts, architecture and design an understanding of the basic principles of physics and an appreciation of how the results of physics influence contemporary society. Prerequisite: MATH 122. This course does not count for graduation in any engineering or physical science program. (3-0-3), (3-0-3)

PHYS 213
Basic Physics Lab: Mechanics
Corequisite: PHYS 211. (0-3-1) (C)

PHYS 214
Basic Physics Lab:
Electromagnetism and Optics
Corequisite: PHYS 212. (0-3-1) (C)

PHYS 221
General Physics II:
Electromagnetism and Optics
Simple harmonic motion, oscillations and waves. Charge, electric field, Gauss' Law and potential. Capacitance, resistance, simple AC and DC circuits. Magnetic fields, Ampere's Law, Faraday's Law and induction. Maxwell's equations and electromagnetic waves. Prerequisite: PHYS 123. Corequisite: MATH 152 or MATH 162. (3-3-4) (C)

PHYS 223
General Physics III:
Thermal and Modern Physics
Temperature, first and second laws of thermodynamics, kinetic theory

PHYS 224
General Physics III Lecture:
Thermal and Modern physics

PHYS 240
Computational Science
This course provides an overview of introductory general physics in a computer laboratory setting. Euler-Newton method for solving differential equations, the trapezoidal rule for numerical quadrature and simple applications of random number generators. Computational projects include the study of periodic and chaotic motion, the motion of falling bodies and projectiles with air resistance, conservation of energy in mechanical and electrical systems, satellite motion, using random numbers to simulate radioactivity, the Monte Carlo method, and classical physical models for the hydrogen molecule and the helium atom. Prerequisite: PHYS 223 or permission of the department. (2-3-3) (C)

PHYS 304
Kinetic Theory and Thermodynamics
The notion of phenomenological characterization: pressure, volume, temperature, etc. The first and second laws of thermodynamics. Transport phenomena; thermodynamic functions and their applications. Introduction to Maxwell-Boltzmann statistics. Prerequisite: PHYS 223. (3-0-3)

PHYS 308, 309
Classical Mechanics I, II
Newton's Laws, one-dimensional motion, vector methods, kinematics, dynamics, conservation laws and the Kepler problem. Collisions, systems of particles, and rigid-body motion. Approximation techniques; Lagrangian and Hamiltonian formulations of classical mechanics; small oscillations. Prerequisites: PHYS 223, MATH 252. (3-0-3); (3-0-3)

PHYS 348
Modern Physics for Scientists and Engineers
An introduction to modern physics with emphasis on the basic concepts that can be treated with elementary mathematics. Subjects covered include Einstein's special theory of relativity, black body radiation, the Bohr atom, elementary wave mechanics, and atomic and molecular spectra. Prerequisite: PHYS 223 or 224. (3-0-3)

PHYS 401
Statistical Physics

PHYS 403
Relativity
Introduction to the special and general theories of relativity. Lorentz covariance. Minkowski space. Maxwell's equations. Relativistic mechanics. General coordinate covariance, differential geometry, Riemann tensor, the gravitational field equations. Schwarzschild solution, astronomical and experimental tests, relativistic cosmological models. Prerequisites: PHYS 309, MATH 251 or consent of instructor. (3-0-3)

PHYS 404
Subatomic Physics
Historical introduction; general survey of nuclear and elementary particle physics; symmetries and conservation laws; leptons, quarks and vector bosons; unified electromagnetic and weak interactions; the parton model and quantum chromodynamics. Prerequisite: PHYS 348. (3-0-3)

PHYS 405
Fundamentals of Quantum Theory I
A review of modern physics including topics such as blackbody radiation, the photoelectric effect, the Compton effect, the Bohr model of the hydrogen atom, the correspondence principle, and the DeBroglie hypothesis. Topics in one-dimensional quantum mechanics such as the particle in an infinite potential well, reflection and transmission from potential wells, barriers and steps, the finite potential well, and the quantum harmonic oscillator. General topics such as raising and lowering operators, Hermitian operators, commutator brackets and the Heisenberg Uncertainty Principle are also covered. Many particle systems and the Pauli Exclusion Principle are discussed. Three-dimensional quantum mechanical systems, orbital angular momentum, the hydrogen atom. Prerequisites: PHYS 308, PHYS 348, MATH 252 or permission of department. (3-0-3)

PHYS 406
Fundamentals of Quantum Theory II
Zeeman and Stark Effects. Addition of spin and orbital angular momenta, the matrix representation of quantum mechanical operators, the physics of spin precession and nuclear magnetic resonance. Time independent and time dependent perturbation theory, Fermi's Golden Rule and the physics of radiation emitted in the course of atomic transitions. Indistinguishable particles in quantum mechanics, the helium atom. Scattering theory, using partial wave analysis and the Born approximation. Prerequisite: PHYS 405. (3-0-3)
PHYS 410
Molecular Biophysics

PHYS 411
Astrophysics
Celestial mechanics and planetary motion; stellar structure and evolution; energy generation in stars; theory of white dwarfs, pulsars (neutron stars) and black holes; quasars; cosmology, background microwave radiation, and the big bang model. Prerequisite: PHYS 223 or consent of instructor. (3-0-3)

PHYS 412
Modern Optics and Lasers
Geometrical and physical optics. Interference, diffraction and polarization. Coherence and holography. Light emission and absorption. Principles of laser action, characterization of lasers, and laser applications. Same as ECE 413. Prerequisites: PHYS 348 or consent of instructor; cs 105. (3-0-3)

PHYS 413
Electromagnetism I
Differentiation and integration of vector fields; electrostatics and magnetostatics. Calculation of capacitance, resistance, and inductance in various geometries. Prerequisites: PHYS 308, MATH 252. (3-0-3)

PHYS 414
Electromagnetism II

PHYS 415
Solid-State Electronics
Energy bands and carrier transport in semi-conductors and metals.

PHYS 418
Introduction to Lasers

PHYS 427, 428
Advanced Physics Laboratory I, II
Experiments related to our present understanding of the physical world. Emphasis is on quantum phenomena in atomic, molecular and condensed matter physics, along with the techniques of measurement and data analysis. The second semester stresses project-oriented experiments on modern topics including spectroscopy, condensed matter physics, and nuclear physics. Prerequisite: PHYS 300 or consent of instructor. (2-3-3); (2-3-3) (C)

PHYS 437
Solid State Physics
Crystal structure and binding; lattice vibrations; phonons; free electron model; band theory of electrons. Electrical, thermal, optical and magnetic properties of solids. Superconductivity. Prerequisite: PHYS 348 or consent of instructor. (3-0-3)

PHYS 440
Computational Physics
Root finding using the Newton-Raphson method; interpolation using Cubic Splines and Least Square Fitting; solving ordinary differential equations using Runge-Kutta and partial differential equations using Finite Difference and Finite Element techniques; numerical quadrature using Simpson’s Rule, Gaussian Quadrature and the Monte Carlo Method; and spectral analysis using Fast Fourier Transforms. These techniques are applied to a wide range of physics problems such as finding the energy levels of a finite quantum well using a root finding technique; solving the Schrodinger equation using the Runge-Kutta-Fehlberg method; using random numbers to simulate stochastic processes such as a random walk; using the Fast Fourier Transform method to perform a spectral analysis on non-linear; chaotic systems such as the Duffing oscillator; and using auto-correlation functions to simulate sonar or radar ranging problems. Prerequisites: PHYS 240, PHYS 308, PHYS 428, PHYS 405 or permission of department. (2-3-3) (C)

PHYS 485
Colloquium
Lectures by prominent scientists. Prerequisites: PHYS 223 and 224, or permission of instructor. This course may not be used to satisfy the natural science general education requirement. (1-0-1)

PHYS 491
Undergraduate Research
Student participation in undergraduate research, usually during the junior or senior year. Prerequisites: Recommendation of adviser and approval of the department chair. (Credit: Variable) (C)

PHYS 497
Special Topics in Physics
(Credit: Variable) (C)

Graduate Courses
Graduate courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty adviser. See the current IIT Bulletin: Graduate Programs for full descriptions.

PHYS 501
Methods of Theoretical Physics I

PHYS 502
Methods of Theoretical Physics II

PHYS 505
Electromagnetic Theory

PHYS 507
Electrodynamics

PHYS 508
Analytical Dynamics
PHYS 509 Quantum Theory I
PHYS 510 Quantum Theory II
PHYS 515 Statistical Mechanics
PHYS 521 Quantum Electronics
PHYS 537 Physics of the Solid State I
PHYS 538 Physics of the Solid State II
PHYS 553 Quantum Field Theory
PHYS 561 Radiation Biophysics
PHYS 570 Introduction to Synchrotron
 Radiation Research
PHYS 571 Health Physics I
PHYS 572 Health Physics II
PHYS 573 Standards, Statistics
 and Regulations
PHYS 574 Dosimetry
PHYS 575 Case Studies in Health Physics

Political Science

PS 200 American Government
Surveys American politics and
government. The informal political
institutions, such as parties and inter-
est groups, are analyzed and related
to the formal governmental institu-
tions, such as the presidency and the
Congress. Emphasis is placed on how
the American political culture shapes
these institutions and how public poli-
cies are produced. (3-0-3) (S) (C)

PS 201 Politics and Public Policy
Analyzes how social problems become
public problems and how the govern-
ment develops public policies and
with what effect. Emphasizes the
characteristics of the American policy-
making process. Case studies are used to
clarify the process. (3-0-3) (S) (C)

PS 256 Law in American Society
Examines the nature of law and the
legal system in American society.
Special attention will be paid to the
institutions of the legal system, how
they are supposed to function, and
how they actually function. Topics for
study may include the police, prosecu-
tors, lawyers, judges, juries, grand
juries and public defenders. The
courts, ranging from the U.S. Supreme
Court to local trial courts, are studied.
The impact of U.S. Supreme Court
decisions on the system of justice in
America is explored. (3-0-3) (S) (C)

PS 273 Great Political Thinkers
Introduces students to the ideas of the
world's great political philosophe-
s. Plato, Aristotle, Hobbes,
Locke, Rousseau, Marx and others
will be covered. (3-0-3) (S) (C)

NOTE: All political science courses
numbered above 300 require as prereq-
sites successful completion of at
least one other course marked with
an (S) and satisfaction of IIT’s Basic
Writing Proficiency Requirement.

PS 300 Introduction to the Social Sciences
The course introduces the founda-
tions of the social science disciplines,
notably economics, history, political
science, psychology and sociology.
Primary emphasis will be placed on
how the disciplines employ distinctive
assumptions and perspectives, which
are used to generate understanding,
form explanations, and construct
theories. (3-0-3) (S)

PS 301 Introduction to Political Science
Introduces students to some of the
classic literature in modern American
politics, covering theory, the
presidency, Congress and federalism.
(3-0-3) (S)

PS 303 Politics and the Media
Analyzes the media's role in con-
temporary American politics and
government. Emphasis is placed on
how the media, both newspapers and
television, manufacture the news and
how the news influences political and
government agenda, decision making
and public policies. (3-0-3) (S)

PS 309 Research Methods in Social
 and Political Science
Introduces students to explanation in
the social sciences and both qualitative
and quantitative research methods.
Topics covered include formulation
of research questions, measurement,
data collection, survey research,
significance tests, experimental and
quasi-experimental design, sampling,
and various techniques of qualita-
tive research. Prerequisite: A statistics
course approved by the department.
Same as SOC 309. (3-0-3) (S) (C)

PS 310 Social and Political Thought
Examines central social and political
theories and their ideas concerning
such things as the relationship
between individual and society, social
harmony and conflict, social equality
and the role of the state. Same as
SOC 310. (3-0-3) (S) (C)

PS 315 Urban Politics
Examines city and metropolitan poli-
tics and government. Emphasizes
how economic and demographic
changes influence local politics, how
local politics work, and how state
and national policies influence local politics. Special attention is devoted to Chicago politics. (3-0-3) (S)

PS 317 Chicago Politics
The study of Chicago's politics and government from both historical and contemporary perspectives. Emphasis is placed on changes that have significantly shaped the direction of Chicago's politics. Special attention is devoted to social class, ethnicity, race and ideology as factors that have influenced the Democratic political machine and its opposition. (3-0-3) (S)

PS 318 Contemporary Constitutional Issues
The course examines how decisions about some of our basic rights are made. Emphasizes U.S. Supreme Court decisions in the areas of criminal law, desegregation, education, welfare, housing and consumer law. Related topics of special interest to students in the class can be added to the syllabus. Supreme Court decisions are read and supplemented by textual material. (3-0-3) (S) (C)

PS 330 International Relations
Examines the relations among nations from the perspective of both the international system and the nation state. Emphasizes the transformation in the international system caused by weapons, production and communications technologies. Compares the nature, function and purpose of modern warfare and other forms of conflict with the prospects for international order through law, organization, communications and arms control. Gives special attention to the international policies of the United States toward various regions and its role in international organizations. (3-0-3) (S) (C)

PS 332 Politics of Science and Technology
Explores the complex interrelationships among science, technology and politics, with emphasis on the political issues created by contemporary scientific advances. Gives roughly equal attention to the politics of scientific discovery; the development of government organization for science and scientific advice to government; the impact of industrialized science and advanced technology on the economy and society; and the growing debate over the social implications of science and technology and how they can be predicted, measured and controlled. Same as SOC 304. (3-0-3) (S) (C)

PS 333 National Defense Policy
Examines the formulation and implementation of national security and military policy in the United States. Surveys the emergence and growth of military strategy and the defense establishment, with primary emphasis on contemporary issues, institutions and policies, and prospects for the future. Emphasizes the impact of nuclear weapons on military strategy and security and the post Cold war struggle over forces and missions. (3-0-3) (S) (C)

PS 338 Energy and Environmental Policy
Places energy and environmental policy in domestic and global contexts. Traces the economic and political implications of dependence on fossil fuels and the attempt to develop alternate energy sources and promote conservation. Assesses the environmental effects of resource consumption and the effort to control these effects by increased efficiency and regulation of pollution. Explores such problems as nuclear waste, acid rain, global warming and deforestation. Examines national and international attempts at economic, political and technological solutions. (3-0-3) (S) (C)

PS 339 Nuclear Energy and Society
Explores the relationship between nuclear energy-science, technology, and products, and society-national, local, and global. Gives detailed attention to the discovery of nuclear fission and its exploitation during World War II and after, culminating in the global nuclear arms race. Examines the emergence and growth of nuclear power and the rise of the controversy over its safety, security, and economy, Considers the risks of continued proliferation, the prospects for arms control and the "peaceful atom," and the chances for survival in a nuclear world. Uses films, case studies, guest lectures, and simulations where appropriate. (3-0-3) (S) (C)

PS 345 The American Presidency
Surveys the evolution of the office and powers of the presidency as a result of historical forces, institutional factors, and the actions of those who have served as president. Studies the relationships of presidents with political parties, Congress, the bureaucracy, media, and the public, emphasizing both domestic and foreign policy. Gives major attention to changes in the presidential selection process and their implications for those who run and win the office. Examines the alleged crisis of the contemporary presidency and the proposals for overcoming it. (3-0-3) (S) (C)

PS 351 Public Administration
Examines the nature of administrative organization, decision making in organization, and organization structure and processes: division of work, authority, communications and planning. Considers the role of the government executive. Analyzes relation of fiscal procedures and personnel management to organization. (3-0-3) (S) (C)

PS 355 Political Sociology
Surveys major issues and problems in the field of political sociology. Topics include the forms of political power structures, elitist approaches to politics, community and national power structure, and political socialization. (3-0-3) (S)

PS 360 Globalization
This course explores the different processes of globalization and how they shape and, in turn, are shaped by major institutions, such as sovereignty and citizenship and major phenomena such as technology, media, immigration and the environment. This course will
address the debates around the nature of globalization and seeks a balanced analysis of this modern trend. (3-0-3) (S) (C)

PS 408
Methods of Policy Analysis
Introduces students to the field of Policy Analysis and acquaints students with basic methods policy analysis and urban planning. Course covers methods of analyzing and resolving policy issues relating to a broad range of public sector problems. Emphasis is on methods of analysis and problem solving rather than on politics or political process. Topics include decision theory, benefit/cost analysis, problem simulation, population projection, problem formulation and definition. Course will be taught using the case method. The course is of particular interest to students interested in applications of quantitative models to solve public sector problems. (3-0-3) (S) (C)

PS 425
Rhetoric and Narrative in Legal Analysis
During the first half of this small seminar, students will be provided with theoretical material drawn from literary theory and cognitive science on categorizations, narrative and rhetoric. They will read case studies demonstrating how this material provides useful analysis and understanding of legal thinking and can be used to analyze Supreme Court opinions. During the second half of the course, students will apply the techniques learned in undertaking their own analysis of judicial opinions, briefs and testimony of experts. For people intending to practice law, the course provides skills that are useful in construction and analysis of legal arguments. For others, the course provides techniques fostering understanding of the manner in which courts and experts reach and justify their conclusions. Prerequisite: Instructor’s consent. (3-0-3)

PS 452
Bureaucracy
Analyzes bureaucracy in its social context. The evolution of the theory and practice of bureaucracy as a form of control, coordination, and social order are considered. Emphasizes government bureaucracies, with selected examples from other organizations. (3-0-3) (S) (C)

PS 453
Regulatory Policy and Politics
Examines the changing role of government regulation of private and public activities from a political and administrative perspective. Explores reasons for the growth of government regulation from the Progressive era through the New Deal to the social regulation of the 1970s and for the subsequent controversy over economic and social deregulation. Investigates the regulatory process, including administrative law, standards for rule-making, and the involvement of organized groups and the courts. Studies specific cases from such areas as transportation, environment, energy, public health and research and development. (3-0-3) (S) (C)

PS 462
American Governmental Institutions
An advanced course in American government intended to develop knowledge and analytical skills to assess how well our government works and how it might work better. The course focuses on the operation of federal executive, legislative and judicial institutions, the policymaking process (including the role of administrators), and the power exercised by organized groups, experts and the media. (3-0-3) (S) (C)

PS 477
Topics in the Study of Politics
Provides students a reading and seminar course on a selected topic of politics. Subject matter will change in successive offerings of the course. (3-0-3) (S) (C)

PS 497
Directed Readings in Political Science
Consists of independent reading and analysis, centered on particular problems and supervised by a member of the political science faculty. Prerequisite: Consent of instructor. (Credit: Variable; maximum 4 credit hours) (S) (C)

Psychology

PSYC 100
Introduction to Professions
Introduction to psychology and social science professions. Topics include problem formulation and career opportunities, spreadsheets and relevant computer applications, as well as data search tools. (2-0-2) (C)

PSYC 204
Experimental Psychology and Research Methods
Introduction to experimental methodology in learning, motivation and psychophysics. Design, performance and analysis of basic experiments. Prerequisites: PSYC 221 or PSYC 222. Note: Offered every other year. (2-2-3) (N,C)

PSYC 221
Human Behavior, Growth and Learning
Survey of personality, developmental, assessment, learning and social psychological aspects of human behavior. (3-0-3) (S) (C)

PSYC 222
Brain, Mind and Behavior
Survey of sensation, perception, motivation, physiological and neuro-psychological bases of behavior. (3-0-3) (S) (C)

PSYC 238
Professional Skills
Didactic and applied approach to professional skill development in the areas of oral communication, conflict management and interpersonal dimensions of the work setting. (3-0-3)

PSYC 301
Industrial Psychology
Survey of practical applications of psychology to problems of business and industry: work, job placement, morale, safety, turnover, absenteeism and training. (3-0-3) (S) (C)

PSYC 303
Abnormal Psychology
Survey of the dynamics underlying behavior deviations. Considers therapeutic procedures and psychotherapy. (3-0-3) (S) (C)
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 310</td>
<td>Social Psychology</td>
<td>Description and analysis of behavior and experience as determined by social conditions. Includes social issues, human relations, prejudice and leadership. (3-0-3) (S)</td>
</tr>
<tr>
<td>PSYC 406</td>
<td>History and Systems of Psychology</td>
<td>Historical development of influential psychological systems: structuralism, functionalism, behaviorism, psychoanalysis and Gestalt psychology. Prerequisite: 12 hours of psychology. (3-0-3) (S)</td>
</tr>
<tr>
<td>PSYC 409</td>
<td>Psychological Testing</td>
<td>Survey of current group tests, emphasizing basic concepts, e.g., validity and reliability, as well as practical applications and measurement techniques. Prerequisites: PSYC 221, PSYC 222, MATH 221. (3-0-3)</td>
</tr>
<tr>
<td>PSYC 410</td>
<td>Vocational Rehabilitation</td>
<td>Historical, philosophical, and legal bases of rehabilitation. Study of vocational, independent living, public and private rehabilitation, service delivery systems, and roles and functions of the practitioner. Prerequisite: PSYC 221. (3-0-3) (S) (C)</td>
</tr>
<tr>
<td>PSYC 411</td>
<td>Medical Aspects of Disabling Conditions</td>
<td>Survey of human organ systems, medical terminology, unique characteristics of disabling conditions, including severe disabilities. Vocational consequences, environmental impact and implications for the rehabilitation process. One of a two-course sequence. Prerequisites: PSYC 221, PSYC 222. (3-0-3) (N)</td>
</tr>
<tr>
<td>PSYC 412</td>
<td>Psychosocial Aspects of Disabling Conditions</td>
<td>Personal adaptation and coping processes following disability; psychological and social consequences of disabling conditions; sexuality and disability; attitudes toward persons with disabilities; stigma management. One of a two-course sequence. Prerequisite: PSYC 221, PSYC 222. (3-0-3) (S) (C)</td>
</tr>
<tr>
<td>PSYC 414</td>
<td>Physiological Psychology</td>
<td>An introduction to the biological bases of behavior with an emphasis on the neuroanatomy and neurophysiology of sensory and central nervous systems. Prerequisites: PSYC 221, PSYC 222. (3-0-3) (N)</td>
</tr>
<tr>
<td>PSYC 420</td>
<td>Single-Subject Design and Applied Behavior Analysis</td>
<td>Single-subject experimental designs for the evaluation of environmental variables on behavior of individuals. Applied behavior analysis, precision teaching and frequency measures for logical inference. Ethical, logical, scientific and practical aspects of "real-world" experimentation for optimizing performance or learning in education, treatment and training. (3-0-3) (S)</td>
</tr>
<tr>
<td>PSYC 423</td>
<td>Learning Theory</td>
<td>Survey of contributions of major learning theorists and pertinent studies. Prerequisite: 12 hours of psychology. Note: Offered every other year. (3-0-3) (S) (C)</td>
</tr>
<tr>
<td>PSYC 426</td>
<td>Cognitive Processes</td>
<td>Survey of research in cognitive psychology; affirmative, conjunctive and disjunctive rules; transfer paradigms; distinctiveness of cues; shift paradigms. Prerequisite: PSYC 204. (3-0-3) (S)</td>
</tr>
<tr>
<td>PSYC 431</td>
<td>Measurement of Attitudes</td>
<td>Survey of methods used in attitude scale construction. Development and use of such scales. Multidimensional scaling. Prerequisite: MATH 221. (3-0-3)</td>
</tr>
<tr>
<td>PSYC 435</td>
<td>Early Development</td>
<td>Processes and theories of mental, social, emotional and physical development of infants, children and adolescents. Prerequisite: Nine credit hours of psychology or consent of instructor. (3-0-3) (S)</td>
</tr>
<tr>
<td>PSYC 436</td>
<td>Adult Development</td>
<td>Explores processes and changes in cognitive, social, physical and emotional functioning across adult life. Prerequisite: Nine credit hours of psychology or consent of instructor. (3-0-3) (S)</td>
</tr>
<tr>
<td>PSYC 449</td>
<td>Practicum in Rehabilitation Services</td>
<td>Seminar and supervised fieldwork experience in a rehabilitation setting with disabled individuals. Emphasizes service delivery, interviewing techniques, and caseload management. Prerequisites: SOC 480; PSYC 410; PSYC 411; and PSYC 412 or concurrent registration. (3-0-3)</td>
</tr>
<tr>
<td>PSYC 452</td>
<td>Personality Theory</td>
<td>Survey of personality theories and their application to everyday life. Prerequisites: PSYC 221, PSYC 222. (3-0-3) (S)</td>
</tr>
<tr>
<td>PSYC 456</td>
<td>Engineering Psychology</td>
<td>Theory of human physical and psychological abilities as they relate to design of transportation, housing, workplace, defense and recreational systems. Topics include theories relating to psychophysiology, anthropometry, communications, man-machine interactions, training, maintainability, safety and engineering evaluation. Prerequisites: PSYC 221, PSYC 222. (3-0-3) (S)</td>
</tr>
<tr>
<td>PSYC 482, 483</td>
<td>Undergraduate Research Seminar I, II</td>
<td>An introduction to applied research in psychology. Includes a didactic review of basic and current issues in psychological research as well as an experiential component. Students actively participate in ongoing faculty research programs and are exposed to all areas of research. Prerequisites: PSYC 221, PSYC 222 and PSYC 204; or consent of instructor. (1-2-3)</td>
</tr>
<tr>
<td>PSYC 487</td>
<td>Integrative Psychology Seminar I</td>
<td>A synthesis of issues and areas in psychology. Prerequisites: Junior standing, 21 credit hours in psychology, and MATH 221. (3-0-3)</td>
</tr>
</tbody>
</table>
Graduate Courses

The following graduate courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty adviser. See the current IIT Bulletin: Graduate Programs for course descriptions.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 488</td>
<td>Integrative Psychology Seminar II</td>
<td>Seminar integrating seminal and cutting edge psychological writings both empirical and conceptual to address key issues in contemporary psychology. Prerequisite: Third-year standing, 24 credit hours in psychology (3-0-3)</td>
</tr>
<tr>
<td>PSYC 489</td>
<td>Undergraduate Psychology Seminar</td>
<td>Reports and discussion of current problems and issues in psychology. Prerequisites: PSYC 221, PSYC 222 and PSYC 204; or consent of instructor. (3-0-3) (S)</td>
</tr>
<tr>
<td>PSYC 497</td>
<td>Special Problems</td>
<td>Independent study involving compilation and analysis of data bearing on a significant problem. Prerequisites: Junior standing and consent of instructor. (Credit: Variable)</td>
</tr>
</tbody>
</table>

Graduate Courses (Continued)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 501</td>
<td>Psychological Foundation of Behavior</td>
<td></td>
</tr>
<tr>
<td>PSYC 502</td>
<td>Social Bases of Behavior</td>
<td></td>
</tr>
<tr>
<td>PSYC 503</td>
<td>Learning, Cognition and Motivation</td>
<td></td>
</tr>
<tr>
<td>PSYC 504</td>
<td>Individual Differences and Personality Development</td>
<td></td>
</tr>
<tr>
<td>PSYC 513</td>
<td>Vocational Evaluation I</td>
<td></td>
</tr>
<tr>
<td>PSYC 523</td>
<td>Introduction to Theories of Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 545</td>
<td>Graduate Statistics</td>
<td></td>
</tr>
<tr>
<td>PSYC 556</td>
<td>Organizational Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 557</td>
<td>Pre-practicum in Rehabilitation Counseling</td>
<td></td>
</tr>
<tr>
<td>PSYC 561</td>
<td>Applied Counseling Techniques</td>
<td></td>
</tr>
<tr>
<td>PSYC 562</td>
<td>Job Placement</td>
<td></td>
</tr>
<tr>
<td>PSYC 563</td>
<td>Vocational Counseling</td>
<td></td>
</tr>
<tr>
<td>PSYC 574</td>
<td>Administration in Social Service Delivery</td>
<td></td>
</tr>
<tr>
<td>PSYC 583</td>
<td>Rehabilitation Engineering Technology</td>
<td></td>
</tr>
<tr>
<td>PSYC 590</td>
<td>Introduction to psychiatric Rehabilitation</td>
<td></td>
</tr>
</tbody>
</table>

Sociology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC 200</td>
<td>Introduction to Sociology</td>
<td>Introduces students to the structure and operation of society. Analyzes individual behavior. Emphasizes the structure and problems of American society (3-0-3) (S) (C)</td>
</tr>
<tr>
<td>SOC 201</td>
<td>Social Psychology</td>
<td>Examines how contemporary society molds individuals to its image. Topics include: human instinct, values and needs, attitudes, the process of socialization, suggestion and propaganda, rumor, prejudice, social conflict, conformity, social values, and interaction. (3-0-3) (S) (C)</td>
</tr>
<tr>
<td>SOC 210</td>
<td>Society, Environment and Ecology</td>
<td>An introductory survey course with no prerequisites. Aims at providing environmental literacy and understanding of the changing arguments in the environmental debate. Traces the relationship between man and nature from early industrial optimism to the 1960s rise of concerns about pollution, the 1970s limits to growth debate, and today's concerns with global climate change and the fate of earth itself. Explores the possibility of a new paradigm of clean, innovative technology, and its social, economical and political implications. (3-0-3) (S) (C)</td>
</tr>
<tr>
<td>SOC 240</td>
<td>Social Problems</td>
<td>Analyzes selected problems affecting American society, including: poverty among and discrimination against minorities; crime and delinquency; urban problems; United States and world population problems; foreign policy and militarism. (3-0-3) (S) (C)</td>
</tr>
<tr>
<td>SOC 242</td>
<td>Industrial Society</td>
<td>Analyzes social issues of particular relevance to scientists and engineers: demographic trends and their effects on schools, labor markets, workplaces and other institutions; the changing role of the United States in the world political economy; the impact of changing technology on work and employment; the shift to a service economy; the Japanese challenge to American business and industry; responses of both the public and private sectors to these issues. (3-0-3) (S) (C)</td>
</tr>
<tr>
<td>SOC 249</td>
<td>Sociology of the Family</td>
<td>This course examines the family in its cultural, social, and economic contexts: how the family forms, function, and ideology are related to other aspects of society; and how the family serves as the environment for interpersonal behavior. Among the topics to be considered are feminine and masculine roles, alternative lifestyles, parenthood and the changes in family related to the human life cycle. (3-0-3) (S) (C)</td>
</tr>
<tr>
<td>SOC 259</td>
<td>Race and Ethnic Relations</td>
<td>The course examines the social, psychological, and cultural dimensions of race and ethnic relations in the context of modern society. Major theories regarding the origins and impact of interracial and interethnic conflict are analyzed, with special emphasis placed on the consequences of such conflict for the wider society. Governmental responses to prejudice and discrimination also are exam-ined. (3-0-3) (S) (C)</td>
</tr>
</tbody>
</table>
NOTE: All sociology courses numbered above 300 require as prerequisites successful completion of at least one sociology course at the 200 level, at least one other course marked with an (S), and satisfaction of IIT’s Basic Writing Proficiency Requirement.

SOC 301
The Social Dimension of Science
Examines how social and psychological factors influence the reasoning and behavior of scientists. Through contrasting traditional views of science with actual scientific practice, the course aims at understanding such phenomena as “hype,” resistance to scientific discovery, controversy, vicious competition, error, self-deception and fraud. (3-0-3) (S) (C)

SOC 302
Science and Belief
Explores the relationship between science and belief through comparing Western science with other belief systems, science with religion, and science with pseudo-science. The course also examines cultural and ideological influences on scientific knowledge and public faith in science. (3-0-3) (S) (C)

SOC 303
Science in Society
Examines the role of the institution of science, scientific knowledge, and scientists in society. The course focuses on areas where science significantly influences and is influenced by political, economic and cultural institutions and contexts. The course addresses broader theoretical issues such as boundaries of science, autonomy, control of science, and science and power. (3-0-3) (S) (C)

SOC 304
Politics of Science and Technology
Explores the interrelationships among science, technology and politics, with emphasis on the political issues created by contemporary scientific advances and molecular biology. Investigates the politics of scientific discovery, as well as procedures for scientific advice to government, the impact of industrial technology on the economy and society, and the social implications of science and technology and how they can be predicted, measured and controlled. Same as PS 332. (3-0-3) (S) (C)

SOC 305
Social Communication
This course studies the variety of subtle ways, verbal and nonverbal, in which humans communicate in personal, professional and public life — and how to identify and solve problems and misunderstandings that typically arise. Topics include the social nature of humans, interpersonal communication, interaction within and between groups, teamwork, leadership, and intercultural communication. Group and individual exercises develop skills in social analysis, problem finding, problem solving, and oral and written presentation. (3-0-3) (S) (C)

SOC 306
Rationality & Emotion in Society
This course explores two simultaneous trends in the contemporary societies. The first is the increasing emphasis on rationality. The second is the persistence and the growth of a-rational social movements. Specific topics may include bureaucratization technology, “McDonaldization,” new age philosophies, religious fundamentalism, nationalism and terrorism. (3-0-3) (S) (C)

SOC 307
Elites and Civil Society
Examines two contrasting views of the American Political System. In the first, a small number of powerful actors dominate. In the second, a civil society comprised of active citizens holds sway. Considers empirical evidence for both characterizations and address consequences for democracy. (3-0-3) (S) (C)

SOC 308
Research Methods in Social and Political Science
Introduces students to explanation in the social sciences and both qualitative and quantitative research methods. Topics covered include formulation of research questions, measurement, data collection, survey research, significance tests, experimental and quasi-experimental design, sampling, and various techniques of qualitative research. Prerequisite: A statistics course approved by the department. Same as PS 309. (3-0-3) (S) (C)

SOC 310
Social and Political Thought
Examines central social and political theories and their ideas concerning such things as the relationships between individual and society, social harmony and conflict, social equality, and the role of the state. Same as PS 310. (3-0-3) (S) (C)

SOC 311
Comparative Social Structure
Examines theories of social organization with particular focus on complex bureaucratic organizations, social stratification and social change; also considers basic social institutions (e.g., family and government) in light of relevant theories. (3-0-3) (S) (C)

SOC 321
Social Inequality
Evaluates the patterns and dimensions of social, economic and political inequality in American society and how these compare with other societies; who gets ahead and why; the relationship of social class to other features of society; some consequences of social stratification; and outlooks for the future of inequality in the United States. (3-0-3) (S) (C)

SOC 330
Sports and Society
Exploration of sports as a multi-billion dollar “microcosm” of society. How do structure and cultural expectations constrain various participants and viewers of the sports worlds? Through a combination of academic readings, popular commentary, documentaries and movies, the course will explore American business, values, preferences, gender and ethnic expectations, and education as reflected in and affected by sports. (3-0-3) (S) (C)

SOC 348
Deviant Behavior and Conformity
Analyzes the definition, development, and control of deviant behavior in relation to social processes. Societal reaction to and the amount, distribution, and behavior systems of various
forms of deviance (drug addiction, suicide, crime, alcoholism, illegitimacy, etc.) are examined. (3-0-3) (S) (C)

SOC 350
Urban Sociology
This three-part course investigates the role cities have played in the development of urban societies; analyzes the historical development of American cities and the problems they face today, including poverty and racial tensions, fiscal strain, and population and industrial decline (with an emphasis on Chicago); and examines urban patterns and problems in the third world. (3-0-3) (S) (C)

SOC 352
Sociology of Education
Analyzes the organization and purpose of schooling in American society, including the historical development of American education; the relationship of schooling to life chances and individual success; the bureaucratic characteristics of schooling; contemporary problems facing American education and proposals recommended for their solution; and how the U.S. educational system compares with those of other societies. (3-0-3) (S) (C)

SOC 355
Political Sociology
Surveys major issues and problems in political sociology, including the forms of political power structures, elitist approaches to politics, community and national power structure, voting behavior, nation building and modernization, and civil-military relations. (3-0-3) (S) (C)

SOC 356
Transformative Technologies
Technological innovations commonly have widespread effects within a society. A handful of technologies, however, have such a profound impact on social institutions and culture that they can be considered “transformative” for the societies in which they are adopted. Examples include writing, the plow, the clock, the automobile and the computer. This course focuses on such technologies, typically one per semester, and charts the social transformations that have historically accompanied their introduction. Attention will be directed to issues of institutional interdependence, the question of technological determinism, and luddism/resistance. (3-0-3)

SOC 362
Technology and Social Change
Examines major changes in social institutions and the role that technical innovations have played. Introduces the student to various approaches to assessment and forecasting. (3-0-3) (S) (C)

SOC 371
Occupations and Professions
This course considers all factors affecting work, including the transition from school to work; the determinants of earnings and other job benefits; job satisfaction; labor unions and professional associations; class position in American society; the effects of foreign competition; government labor force policies; and the work environment in a comparative perspective. (3-0-3) (S) (C)

SOC 374
The Social Use of Space
Explores the interaction of spatial and social dimensions of the city, including such topics as territoriality, neighboring, perceptions of community, effects of physical design and scale on human behavior, and urbanism and suburbanism as ways of life. Emphasizes case studies and direct observation of actual communities, with special attention to Chicago. (3-0-3) (S) (C)

SOC 415
The New Workplace
In a few years, many workers will no longer commute to downtown offices for a nine-to-five workday. Instead they will join the ranks of telecommuters and other homeworkers who design, write, and talk with each other from their homes. This course will examine the assumptions about time and space and home and work currently operating within the workplace. (3-0-3) (S) (C)

SOC 420
Managers and Management
Managers possess unique positions within the workplace. This course examines the structural constraints and cultural expectations associated with the role of “manager.” We will draw from works within the sociology of business, organizations, work and occupations to explore the historical development and place of managers in society, and the current expectations, reward structure, and dilemmas of managers in a variety of work settings. Some of the dynamics we will address are distinctions between managers, their employers and their subordinates, the infiltration of managerial ideology throughout the broader society; constraints on managers’ decision-making processes; currently popular policies and attitudes among managers in business; and experimental employer/management/employee configurations. This is a readings and discussion seminar. Prerequisite: SOC 200 or, with approval of instructor, significant life experience relevant to course subject matter. (3-0-3) (S) (C)

SOC 431
Development of Sociological Thought
Surveys ideas and issues that have influenced the history of sociology and continue to bear significantly on current theory. Analyzes major figures, schools of thought, conceptual themes and controversies. (3-0-3) (S) (C)

SOC 450
Human Nature
This course discusses and evaluates the traditional tension between “nature” and “nurture” explanations of human behavior. It examines recent theories in biology and evolutionary psychology and the compatibility of these with social scientific theory. An important focus will be on recent controversies in biology and anthropology about such things as human universals, the origin of language, sociobiology and IQ research and the moral/political underpinnings of scientific positions. Requirements include individual and group presentations and a final research paper. (3-0-3)
SOC 454
Gender and Work through Film
Gendered expectations permeate our culture. They are visible everywhere but take some especially interesting forms in the world of work. In this course, we examine the ways that gendered expectations and the opportunities based on them translate into workplace realities for women and men in our society. We do this through a combination of readings, lectures, discussions and films. The films substitute for “for the field” - the real workplaces, dynamics and issues that sociologists and other workplace experts study. The readings and lectures are the maps that guide us through the films as we analyze them. The goals of the course are to introduce students to the sociological study of gender and work and to help develop the observational and analytical skills necessary to understand what’s going on in today’s workplace.
Prerequisites: At least one previous course in sociology, i.e., SOC 200 or higher. In addition, previous study in observational methods or exercises, such as those used in SOC 411 or a variety of ID courses, is highly recommended.
(3-0-3) (S) (C)

SOC 480
Sociology of Disability and Rehabilitation
Examines the institutions and groups that interact with disabled individuals. Topics include the service professions and rehabilitation; labeling and disability; sheltered care versus mainstreaming; disability and the family; the role of support groups; employment of individuals; and a cross-cultural survey of rehabilitation. (3-0-3) (S) (C)

SOC 491
Undergraduate Research in Sociology
Students engage in supervised readings or research in order to obtain more intensive training in special interest areas of sociology.
Prerequisite: Consent of instructor.
(Credit: Variable) (C)

SOC 496
The Art of the Interview
This seminar includes a class project collecting stories about Chicago Lowland Gorillas, guest speakers from various media, and discussion of the student efforts regarding: the homework necessary for a good interview; the kinds of questions one can use; external influences and impact on interviews; the value of good conversationalists and difficult ones; the trials and politics of transcription; and how to create a finished product from the interview material.
(3-0-3)

SOC 497
Directed Readings
Students read selected literature on a particular topic. Prerequisite: Consent of instructor. (Credit: Variable) (S) (C)

SOC 498
Exercises in Behavioral Observation
This course will provide students with an opportunity to acquire better fieldwork skills but providing a forum for discussing and practicing the craft of fieldwork. We will begin by using the more primitive animals at the Shedd Aquarium for our observations and discussions, working our way up to the mammals in the Oceanarium. The course will finish with discussions and observations of primates at the Lincoln Park Zoo. Same as ID 598. (3-0-3) (S)

Spanish

SPAN 101
Elementary Spanish I
An introduction to modern Spanish, with exercises in translation, grammar, conversation and comprehension.
(3-0-3)

SPAN 102
Elementary Spanish II
A study of modern Spanish emphasizing structural analysis and developing comprehension, translation and conversation skills. Reading of selected Spanish texts and exercises in composition. Prerequisite: SPAN 101.
(3-0-3)

SPAN 201
Intermediate Spanish I
Continuation of training in written and oral expression. Study of Spanish literary works and composition of reports. Prerequisite: SPAN 102.
(3-0-3) (H)

SPAN 202
Intermediate Spanish II
Training towards fluency in modern Spanish. Classroom analysis of Spanish literature, with collateral readings and written reports. Prerequisite: SPAN 201. (3-0-3) (H)
Academic Policies and Procedures

Academic Loads ... 179
Academic Program Audit .. 179
Academic Progress, Probation and Dismissal 179
Advising ... 179
Change or Declaration of Major 180
Change of Status ... 180
Class Attendance ... 180
Credit by Examination ... 180
Dean’s List ... 181
Grade Point Average ... 181
Grades ... 181
Graduate Course Enrollment Approval 182
Graduation Requirements ... 182
Graduation with Honors or High Honors 183
Placement Testing .. 183
Registration ... 183
Residence Requirements ... 183
Second Bachelor’s Degree ... 183
Standards of Conduct ... 184
Student Academic Petitions ... 184
Transcripts ... 184
Withdrawal from the University 184
Academic Policies and Procedures

Academic Loads

The average full-time academic load during the fall or spring semester is 15-18 credit hours. The minimum registration required for full-time status for those semesters is 12 credit hours. During the summer session, six credit hours is regarded as full-time enrollment for financial aid consideration. Students who wish to enroll for more than 18 credit hours during the fall or spring semester must obtain permission from the dean of the Undergraduate College. Students who wish to enroll for more than two courses during the summer must obtain permission from the dean of the Undergraduate College. Part-time degree-seeking students who wish to enroll for nine to 11 credit hours must have permission from the dean of the Undergraduate College. Non-degree students requesting a course overload must obtain permission from the Office of Educational Services. Students who wish to change their class schedule must do so at the Student Services Center. Changes can only be made according to the deadlines stated in the IIT Bulletin: Schedule of Classes.

Academic Program Audit

An academic audit provides a summary of a student’s academic status to date and lists the courses to be completed in order to receive a degree. Most undergraduate students who have completed at least 70 semester hours (including applicable transfer credit) will receive an audit from the Office of Educational Services. Some students will be required to submit an approved program of study and should consult their departmental adviser regarding this requirement. After receiving their first audit, students may request periodic updates.

Academic Progress, Probation and Dismissal

All students who are degree candidates are expected to maintain satisfactory academic progress. This includes maintaining satisfactory grade point averages and a satisfactory rate of progress toward the completion of their degree programs.

Students who do not maintain at least 2.00 cumulative and 1.85 current GPA and a 2.00 cumulative GPA in their major field are placed on academic probation. Their eligibility for financial aid also will be reviewed.

Degree-seeking students also are expected to maintain a satisfactory rate of progress. For full-time students, this means a minimum of 12 credit hours per semester applicable to their degrees. For part-time students, a satisfactory rate of progress will enable them to graduate within 12 academic years after achieving degree-seeking status. Students who do not maintain a satisfactory rate of progress in a given semester are placed on probation the following semester. Their eligibility for financial aid also will be reviewed.

Students on probation are not permitted to:
1. Register for more than 15 credit hours per semester.
2. Hold office in any student organization.
3. Represent the university on any athletic team, student organization or committee.
4. Participate in the cooperative education program.

Students who are on academic probation for two consecutive semesters are subject to dismissal from IIT.

The progress of non-degree students also is reviewed and any student failing to maintain an acceptable record is subject to being placed on probation or being dismissed.

A student dismissed by the university can petition the Academic Standing Committee to review his or her case. The student must present substantial academic or other relevant new evidence not available at the time of dismissal in support of the petition for reinstatement. The chair of the Academic Standing Committee will determine whether the new documentation warrants a further review of the case.

Advising

Each undergraduate student is assigned to a faculty adviser who is available to discuss opportunities and career plans in the student’s chosen field and to plan and approve coursework to meet department and university requirements. Students are urged to consult their advisers often. The associate department chairs (or their counterparts) also offer information on university requirements.
Change or Declaration of Major

A student who wishes to change or declare a major must obtain a Change of Major Form from the Office of Educational Services. After completing the form, the student must have the signature from the department chair of the intended major and the dean of the Undergraduate College before returning the form to the Office of Educational Services.

Change of Status

Students who wish to change their classification and/or registration status must complete the applicable procedures listed below no later than two weeks prior to registration (or preregistration).

• Students changing from full-time degree-seeking status to part-time degree-seeking status must notify the Office of Financial Aid if they are receiving financial aid. International students with student visas must be registered as full-time students and are not permitted to change to part-time status.

• Students changing from part-time degree-seeking status to full-time degree-seeking status must inform their department and obtain the necessary adviser’s approval for a full-time course load. Also, students in this category who wish to apply for financial aid must notify the Office of Financial Aid regarding their change of status.

• Students changing from part-time non-degree status to full-time or part-time degree-seeking status must contact the Office of Educational Services. Students must have completed at least one semester of relevant coursework at IIT and must be in academic good standing in order to be eligible for changing their status.

• Students changing from graduate status to undergraduate full-time or part-time status must apply for reinstatement as an undergraduate student in the Office of Educational Services.

Class Attendance

Students may not attend any class unless they are properly registered for that class. (See Payments and Refunds, page 25). All students are expected to attend their classes regularly. Excessive absences may be grounds for a failing grade. In case of illness or hospitalization that will require a student to be absent for more than two days of classes, the Office of Student Affairs (312.567.3080) should be notified at the earliest possible date.

Credit by Examination

Credit may be earned through one or more of the following examination procedures. Total credit from proficiency examinations and CLEP may not exceed 18 semester hours. There is no limit for advanced placement credit.

Advanced Placement Program

Refer to the section on admission, page 14.

College Level Examination Program (CLEP)

For these examinations, which are administered by the College Entrance Examination Board, IIT will award credit under the following conditions:

1. The CLEP examination and the score achieved meet the standards of the IIT department that offers courses in the area of the examination.

2. The CLEP examination is taken before the student enters IIT.

3. Students must observe all rules of the College Level Examination Program regarding the taking of CLEP examinations.

NOTE: Previous acceptance of the examination by another institution does not imply acceptance by IIT.
Proficiency Examinations

Any student who believes that, through self-study or outside experience, he or she has gained the substantive equivalent of the content of a specific course may ask for an examination. With the approval of the chair of the department offering the course and the dean of the Undergraduate College, a proficiency examination will be administered. This is a graded exam and the letter grade will be entered on the permanent record. Proficiency examinations are not allowed for courses in which the student has previously enrolled and must be completed before a student’s final 45 semester hours of enrollment at IIT. The Credit by Examination Form can be obtained in the Student Services Center and a fee of $100 per credit hour is charged for each examination.

Dean’s List

Every semester the names of all undergraduate students who have completed at least 12 graded hours without any “D” or “E” grades and who have a semester grade point average of 3.50 or better appear on the Dean’s List.

Grade Point Average

To determine a grade point average (GPA), divide the total number of grade points earned by the total number of graded semester hours. Note that graded semester hours do not include courses graded “I,” “W” or “AU.” All courses taken at IIT apply to the cumulative GPA, including those that do not apply toward graduation.

Grades

The following grades are used to report the quality of an undergraduate student’s work:

A Excellent, 4 grade points for each semester hour.

B Good, 3 grade points for each semester hour.

C Satisfactory, 2 grade points for each semester hour.

D Minimal Passing, 1 grade point for each semester hour.

E Failure, 0 grade point for each semester hour.

W Withdraw. To withdraw from a course with a grade of “W,” a student must submit a Drop/Add Form to the Student Services Center before the end of the tenth week of the semester (the sixth week of an eight-week summer session and the fourth week of a six-week summer session). Withdrawal without submission of this form is unofficial and will result in a grade of “E.”

NOTE: Withdrawal with a grade of “W” is not possible for a student who has been assigned a failing grade because of academic dishonesty.

NOTE: Grades will only be awarded for classes in which a student is properly registered at the time the class is taken. Retroactive registration is not permitted.

AU Audit. A student may register to audit a course. A Request to Audit Form must be submitted at the time of registration and courses may not be changed to or from audit after registration. There is no credit given for an audited course. Regular tuition rates apply.

I Incomplete work. The “I” grade indicates that the student’s work to date is of passing quality but is incomplete for reasons acceptable to the instructor. The student must have substantial equity in the course with no more than four weeks of coursework remaining to be completed. A grade of “I” will be assigned only in case of illness or for unusual or unforeseeable circumstances that were not encountered by other students in the class and that prevent the student from completing the course requirements by the end of the semester. Prior to assignment of the “I” grade, the student and instructor should reach a written agreement concerning the work still outstanding. The work must be completed by no later than the end of the sixth week of class of the next regular (fall or spring) semester. A grade of “I” will be removed with the approval of the academic unit head and the dean of the Undergraduate College, after all remaining work is completed and the instructor assigns a regular grade. If no regular grade has been received in the Office of Student Records and Registration by the above deadline, the “I” grade will revert to a grade of “E.”
Retaking Courses for a Grade Change

Undergraduate students may repeat a course for a change of grade. A Course Repeat Form must be submitted with the registration form during the registration period. Both grades will be recorded on all transcripts issued. However, only the second grade will be used to compute the cumulative GPA, even if the second grade is lower, except when the second grade is “W” or “AU.” The course repeat policy is as follows:

1. A course repeated for a grade change must be taken within one calendar year after initial enrollment in that course or the next time it is offered (whichever is longer).

2. The same course may be repeated only once for a grade change.

3. No more than three courses may be repeated for a grade change.

4. Re-registration for courses in which a student received a passing grade requires the approval of the student’s academic adviser and the academic associate dean.

5. If a course is no longer offered by the university, the provision to repeat the course for a grade change does not apply.

Graduate Course Enrollment Approval

An undergraduate degree-seeking student who wishes to enroll in a graduate 500-level course must first obtain written approval from the course instructor and faculty adviser stating that the student is qualified. This approval must be presented at the time of registration. An undergraduate non-degree student may be allowed to enroll in a graduate 500-level course in certain instances, but will require the permission of the Office of Educational Services. All undergraduate students who enroll in graduate courses are governed by the graduate grading system for those courses.

Graduation Requirements

The student is responsible for fulfilling graduation requirements as specified in the IIT Bulletin in effect at the time of his or her admission to IIT.

In the event that curriculum requirements change before the student completes a specified degree program, he or she may follow a curriculum in a subsequent IIT Bulletin with the approval of the relevant department chair.

When an earlier curriculum is no longer available, the individual degree program of a student who has been following this earlier curriculum will be modified by the relevant department chair.

The student has the ultimate responsibility to fulfill degree requirements, to attain eligibility to enroll in particular courses, and to comply with all applicable academic rules governing his or her academic program.

NOTE: Students must file an Application for Graduation Form with the Office of Educational Services at the beginning of the semester in which they plan to graduate. Failure to do so will result in the postponement of the student’s graduation. Please refer to the IIT calendar for specific deadlines.

To graduate, students in all undergraduate curricula must complete:

1. Departmental curriculum as listed under various departmental headings or an approved program of study.

2. Credit hour requirements as appropriate to the various curricula (a minimum of 126 hours).

3. General education requirements as outlined on page 30.

4. Residence requirements as outlined on page 175.

5. A minimum cumulative grade point average of 2.00 and a minimum grade point average of 2.00 in the student’s major department courses. A student who completes all course requirements with an average below the minimum grade point requirements may, with permission of his or her department chair and the dean of the Undergraduate College, take additional courses to raise the grade point average.
6. Completion of all the above within a period of eight calendar years from the semester of initial admission for full-time students or twelve calendar years for part-time students after achieving degree-seeking status. A student may petition the major department and the dean of the Undergraduate College to have this period extended. If the petition is approved, this extension may involve additional compensating academic requirements.

7. Payment of all financial obligations to the university. All incomplete coursework must be submitted to the instructor prior to the date of graduation. A recorded grade of “I” (incomplete) in a course required for graduation will result in deferral of that student's graduation until the next term. A new application for graduation must then be submitted.

Graduation with Honors or High Honors

The award of “Honors” or “High Honors” is made at each commencement to a graduating senior who has taken a minimum of 60 graded semester hours required for a particular degree at IIT.

A student who has a grade point average of 3.50 or higher for work completed at IIT will graduate with “High Honors.” A student who has a grade point average of at least 3.00 but less than 3.50 for work completed at IIT will graduate with “Honors.”

Placement Testing

Prior to first enrollment, all first-year and transfer students are required to take the English Proficiency Examination. For those entering students who do not have college credit for a course in calculus, a mathematics placement test also is required. Other placement tests also may be required depending on the entering student's intended major.

For students entering in the fall semester, placement tests are scheduled in the summer preceding matriculation and must be completed prior to matriculation. In the case of students entering in the spring semester (January), special arrangements will be made by the Office of Admission with the individual candidate.

Residence Requirements

All undergraduate degree-seeking students must observe the following residence requirements:

1. Once enrolled at IIT, a student is not permitted to enroll at another institution without obtaining permission. A student must submit an academic petition to the Office of Educational Services for approval prior to registration at another institution.

2. A course failed at IIT must be repeated at IIT. No transfer credit will be awarded for any course equivalent to a course failed at IIT.

3. The final 45 semester hours of work must be completed in residence at IIT. Any proficiency examinations or enrollment at another institution must be completed before this period.

Registration

Students are required to be registered during any semester that they attend classes or make use of university facilities. They are required to be registered for all classes that they attend. Students who are in an exchange, study abroad or cooperative education program also must be registered for their particular programs.

Second Bachelor’s Degree

A student whose first degree is granted by IIT must complete a minimum of 15 additional credit hours at IIT. A student whose first degree was awarded by another institution must complete a minimum of 45 additional credit hours at IIT. All other graduation requirements apply for the second degree. The GPA required for “Honors” or “High Honors” for the second degree includes all IIT coursework.
Standards of Conduct

IIT believes that acquiring self-discipline is part of the educational process. As in any society, students are responsible for their own conduct. They are therefore responsible for any damage they may do to university property and should maintain satisfactory standards of conduct on and off campus. Students also must adhere to the Code of Academic Honesty, which is found in the IIT Student Handbook.

Complaints of student misconduct are handled by the Campus Judicial Officer, the Campus Judicial Board, or, in case of less serious incidents concerning fraternity or sorority regulations, by the Greek Council.

Students are expected to inform themselves of all university regulations and requirements that are published in the Student Handbook.

Student Academic Petitions

A student may request a review of decisions concerning academic status or regulations by submitting a student petition. Students must contact the Office of Educational Services to receive a petition as well as instructions regarding the petition process.

Students who wish to take a course at another institution during the summer must submit a student petition to the Office of Educational Services in order to receive university approval.

Transcripts

Transcripts can be requested from the Student Services Center. Requests must have the signature of the student to comply with the Family Educational Rights and Privacy Act of 1974 as amended. Requests for transcripts should be made at least 10 days prior to the date the transcript is needed; during registration week, please allow additional time for processing transcripts.

Transcripts will be released only after the student has fulfilled all financial obligations to the university. Official copies of transcripts are not issued directly to students. A fee of $5 is charged for each transcript issued.

Withdrawal from the University and Leave of Absence

A full-time degree-seeking student who withdraws from all of his or her courses is in effect withdrawing from the university. A student who withdraws from the university is required to complete the Official Withdrawal Form in the Office of Educational Services. Failure to complete this form may create difficulties in the student’s eligibility to receive a tuition credit, if any is appropriate; in clearing his or her financial record; and in having academic records reflect an official withdrawal.

Full-time students who withdraw with the intention of returning to complete their degree program may be granted a leave of absence. Students must complete the Official Withdrawal Form in the Office of Educational Services and ask for the leave of absence designation in their exit interview. This designation may be granted only to those students who are in good academic standing. A leave of absence cannot exceed one academic year.

A part-time degree-seeking student who withdraws from all of his or her courses is not required to submit an official withdrawal form.
Campus Resources

Academic Resources

Academic Resource Center .. 187
Career Development Center 187
Communication Across the Curriculum Program 187
Computer Facilities ... 188
Cooperative Education ... 188
Ed Kaplan Entrepreneurial Studies Program 188
Educational Services ... 188
International Center ... 188
Leadership Academy ... 189
Libraries. ... 189
Multicultural Programs ... 189
Writing Centers ... 190

Student Affairs

Athletics and Recreation.. 190
Campus Ministry... 191
Counseling and Health Services................................... 191
Disability Resources .. 191
Residence and Greek Life ... 191
Student Activities ... 191
Women's Outreach and Resource Center.................. 191
Academic Resources

Academic Resource Center

The Academic Resource Center (ARC), in Galvin Library, is the central location on the IIT’s Main Campus for tutoring in physics, mathematics, chemistry, computer science, engineering and writing. Select undergraduate peer-tutors are available on a drop-in basis for consultation in any of these subjects. The ARC is also available for advanced undergraduates, especially CAMRAS and other student scholarship holders, who want to receive personalized attention in planning research or IPROs. The ARC hosts a state-of-the-art multimedia computer laboratory where students can find an array of Macintosh G3 and Dell PC Computers, scanners and a color laser printer. In gathering these different services under one roof, the ARC aims to provide a friendly and collegial environment.

Career Development Center

Located in the Galvin Library, the Career Development Center (CDC) is staffed by professionals who provide the such services to IIT students and alumni as on-campus interviewing (for students only); candidate referral program to companies not recruiting on campus; individualized job search and career development assistance; résumé writing/interviewing technique workshops; résumé critiques and mock employment interviews; employer library and videotape collection; labor market and salary data; summer internship development and coordination; job books; career counseling and testing; and cooperative education opportunities.

Communication Across the Curriculum Program

The mission of the Communication Across the Curriculum Program at IIT is to foster a university culture that ensures IIT graduates understand the role of writing, speaking and computer communication in their professional and personal lives. Graduates should know how to use writing and speaking to conduct academic inquiry and professional research, as well as to communicate. Specific goals can be found on the Web site, www.iit.edu/~writer. The CAC office also coordinates all aspects of instruction in written, oral, electronic and interpersonal communications pertaining to the Communication Across the Curriculum Program. CAC faculty and staff work closely with instructors for the communication-intensive courses (“C” courses) of which students are required to complete 42 hours to graduate. The CAC director also administers the IIT Writing Proficiency Requirement.

Office of Technology Services

The Office of Technology Services consists of three departments that manage information technology systems and services throughout IIT, namely IIT Online Technical Services (www.iit-online.iit.edu), Computing and Network Services (cns.iit.edu) and Telecommunications Services (telecom.iit.edu). IIT Online provides course content through wireless television and the Internet for remote and local students, while Computing and Network Services operates most of the information technology infrastructure, and Telecommunications Services focuses on telephone systems and wiring.
Cooperative Education Program

Cooperative education is a learning approach that integrates college studies with professional working experiences in industry, business, or government. Students alternate semesters between full-time work and full-time study. Salaries among IIT co-op students are competitive and help defray educational expenses. Frequently the co-op experience improves employment opportunities upon graduation. Full-time IIT students who are in their second through fifth semesters at IIT and who have and maintain at least a 2.0 GPA are eligible to apply for the co-op program.

The cooperative education program uses three established schedules. These schedules are:

- Alternating: Students alternate terms of full-time work with full-time school. A full-time work schedule must involve the same number of work hours each week as other full-time employees. A minimum of three full-time work terms with the same employer is required.
- Sandwich: Students work three consecutive full-time work terms in twelve months.
- Parallel: Students work part-time during academic terms. Part-time employment must involve an average of 20 hours of work per week. A minimum of six consecutive part-time work terms with the same employer is required. Summer work may be full-time, and the student may register for full-time co-op for the summer, fulfilling the requirement of two part-time work terms.

Students on an alternating or sandwich schedule may take up to six hours of coursework during a work term. Students on a parallel schedule may take up to twelve hours of coursework. Coursework over these limits during a work term constitute an overload and require the approval of the associate academic dean.

Ed Kaplan Entrepreneurial Studies Program

The entrepreneurial studies program is designed for students who are planning to go into business for themselves, join an entrepreneurial venture or want to develop a better understanding of what entrepreneurship is and what it might be like to work for a start-up company. The program will be multidisciplinary and will include business courses and courses on entrepreneurship, entrepreneurial projects, an Entrepreneurs Club, and opportunities to listen to and network with entrepreneurs, venture capitalists and others involved with technology based start-up companies.
Educational Services

The Office of Educational Services maintains the official academic files for all undergraduate students. This office provides a variety of academic support services for an undergraduate student from the time of admission to graduation. These services include evaluation of transfer credits from both United States and international schools; academic program audits; student petitions; change of major; monitoring of academic progress; certification of student’s eligibility for graduation; and official withdrawal from the university. In addition, this office admits part-time undergraduate students and reinstates former undergraduate students to the university.

International Center

The purpose of the International Center is to provide international students, scholars and faculty at IIT with a variety of services to facilitate educational objectives. These services include: Individual and group orientation to the university and community; information, advice and assistance on immigration regulations for students, scholars and faculty; assistance with document preparation for employment and other related non-immigrant benefits; programs and services for dependents; workshops for faculty, staff and students on issues affecting international students and scholars; and resource for study-abroad programs.

All international students, scholars and faculty are required to report to the international center immediately upon arrival.

Leadership Academy

The Leadership Academy is an integral component of IIT’s interprofessional approach to undergraduate education. Its objectives are to create and implement an effective leadership development curriculum for IIT undergraduate students, to identify and support students with exceptional leadership potential, and to evaluate leadership development outcomes at individual and program levels. Currently, the academy offers scholarships, mentors to the scholarship recipients, and a series of engaging leadership development seminars, which any IIT full-time undergraduate student can attend and earn points toward a certificate in leadership studies.

Libraries

IIT’s library system includes Paul V. Galvin Library, The Center for the Study of Ethics in the Professions Library, and Graham Resources Center (Main Campus); Louis W. Biegler Library (Rice Campus); Downtown Campus Information Center (Downtown Campus); and Moffett Center Library (Moffett Campus).

The Paul V. Galvin Library combines a unique blend of cutting-edge information technology with traditional library services. Accessible to physically disabled individuals, Galvin houses centralized collections that support IIT’s major programs, except for business, law and reference materials for architecture. Galvin’s state-of-the-art Digital Library provides 24-hour access via the Internet to 70 databases containing indexes, abstracts and full-text-and-image documents; some 4,000 electronic journals; the ILLINET system; full access to the World Wide Web; and a variety of document delivery services.

The Graham Resource Center (GRC), a branch of Galvin, houses books, journals, indexes, slides, maps and other architectural and city and regional planning materials. GRC is located on the lower level of S.R. Crown Hall.

The Center for the Study of Ethics in the Professions Library contains a variety of materials, including codes of ethics, referral bank of ethics centers, books, professional journals, newsletters, bibliographies, government reports and regulations, and conference proceedings dealing with topics in practical and professional ethics, such as autonomy, confidentiality, loyalty, conflicts of interest, and self-regulation.

Biegler Library on the Rice Campus contains the Alva C. Todd Collection of Electrical Engineering Materials, as well as a small reference and journal collection. With a focus on electronic access to information, the library maintains CD-ROM titles, including Compendex Plus, ABI-Inform, and other engineering and computer science databases, Reference services include interlibrary loan, computer searches and research consultations.

The Downtown Campus Information Center is a technologically advanced library with an outstanding law, business and social sciences collection. The center houses the Library of International Relations, which has one of the largest collections of international law and commerce materials in the Midwest, and is an official depository of the United Nations.

The Moffett Center Library supports research on food safety and technology.
Multicultural Programs

The Center for Multicultural Programs (CMP) is responsible for providing ongoing programs and services that help new and returning students learn how to become effective learners and confident leaders in their new environment. This is accomplished through CMP's Academic Challenge for Excellence (ACE) Mentoring Program by introducing students to a learning system that helps clarify and strengthen their commitment to engineering, and examine and embrace attitudes and behaviors that ensure they will achieve both personal and academic success at IIT and beyond.

Students who participate in the ACE Mentoring Program greatly benefit from the “hands-on” and “how-to” workshops that provide step-by-step strategies and approaches that are essential to academic success, such as setting goals and managing time, essential study skills, stress relieving and preventive methods, and dealing productively with faculty.

ACE Mentoring Program participants also enjoy the benefits of membership in a community made up of peer and professional mentors who share their goal of academic excellence. This community of excellence provides students with the opportunity to work and study together, through such services as team tutorials, corporate-led career building seminars, scholarship and academic-related job-search assistance, academic performance mentoring and counseling and advising.

Writing Centers

The Communication Across the Curriculum Program maintains a writing center in the Academic Resource Center in the lower level of Galvin Library. Peer tutors and advanced graduate students in rhetoric and composition are available on a drop-in basis from 9:30 a.m. to 7 p.m., Monday through Friday. The Humanities Writing Center is in Rooms 333 and 332 in Siegel Hall and is open to all students from 10 a.m. to 3:30 p.m., Tuesdays, Wednesdays and Thursdays. The staff is trained to work with ESL students.

Student Affairs

The Office of Student Affairs oversees many areas of student life and serves as the primary advocate and ombudsperson for students. Students, faculty and staff are encouraged to contact the office for help or referrals.

Activities outside the classroom and laboratory complement and enhance IIT’s central educational mission. IIT encourages all students to participate in athletics, student organizations and professional societies. Students are also encouraged to take advantage of the cultural, educational and recreational resources on campus, as well as in the Chicago area. For additional information on activities, organizations and services, consult the IIT Student Handbook.

Athletics and Recreation

The Department of Athletics and Recreation offers a comprehensive program of varsity sports, intramural competition, instruction and informal recreational activities for both men and women. The Scarlet Hawks men’s varsity teams compete in intercollegiate baseball, basketball, cross-country and swimming; women’s varsity teams compete in cross-country, swimming, basketball and volleyball. The university is an active member of the National Association of Intercollegiate Athletics (NAIA).

For nonvarsity athletes, intramural teams provide spirited competition in basketball, handball/squash, racquetball, softball, tennis, touch football, swimming, cross-country and volleyball. Recreational activities, open swimming and open free-play activities are all available.

Campus Ministry

The Campus Ministry, located in the Hermann Union Building, works with student religious organizations on campus. These organizations sponsor activities for faith development, worship, socializing and service. The campus minister is available to discuss personal or spiritual issues in a confidential setting and to help students look for opportunities for volunteering or community services.
Counseling and Health Services

This office provides help with a wide variety of concerns. Professional counselors and psychologists offer assistance with stress, relationships, traumatic experiences, anxiety, depression or other personal concerns. They can also conduct assessments regarding difficulties in learning or attention. Educational counseling includes help with study skills, time management, test taking, and other avenues toward fulfilling academic potential. Career counseling, regarding, for example, decisions about majors and future directions, is also available. Assistance in cultural adjustment is also available.

Professional nurse practitioners treat routine medical conditions, including sore throats, fevers and minor injuries. They also help with both male and female sexual reproductive issues. The health program manages immunizations and student health insurance. Consulting physicians provide back-up, including a psychiatrist for medication and an internist for more serious medical problems. It is important that students seek help for illnesses as quickly as possible to avoid complications or contagion. For emergencies occurring after office hours (9 a.m.-5 p.m., Mondays through Fridays), the Public Safety Department will transport students to a local hospital emergency room. Counseling and health services are confidential, and there is no charge for office visits. Charges may apply for laboratory tests and medications.

Disability Resources

Services for persons with disabilities are coordinated by the Center for Disability Resources and Educational Development. Persons with disabilities who are interested in applying for admission to any of IIT’s educational programs are invited to call the center prior to their arrival on campus to discuss their individual needs. Enrolled students with disabilities are encouraged to consult the office regarding access to IIT facilities.

Residence and Greek Life

More than half of IIT’s full-time undergraduates live on campus. The Residence Life Office offers a wide range of programs and services designed to enhance campus life. The office coordinates resident advisers, student security, and the Residence Hall Association. In addition to seven residence halls, there are seven fraternity houses and one sorority house. Fraternities and sororities have very active programs, and membership is open to commuting as well as resident students. Housing for married students is available in four campus apartment buildings.

Student Activities

Co-curricular activities and events provide opportunities for students to expand their intellectual, social and recreational interests. The Hermann Union Building (HUB) is the site for feature films, theatrical productions and concerts. The HUB has lounges, study areas, meeting rooms, student organization offices, an auditorium, a ballroom, a cafeteria, a pub, a bowling alley and a game room. The HUB Office oversees many student groups and acts as liaison between the administration and the various organizations. The campus is home to numerous student organizations including the Student Leadership Committee, IIT’s student government; the Residence Halls Association (RHA), which governs the hall councils; Greek Council, the governing organization for social fraternities and sororities; the National Society of Black Engineers (NSBE); Latinos Involved in Further Education (LIFE); Union Board, which plans much of the social and cultural activities on campus; Technology News, the student newspaper; WOUI-FM, the student radio station; and TechMate, the commuter student organization.

Women’s Outreach and Resource Center

IIT’s Women’s Outreach and Resource Center assists women students in their academic programs and adjustment to campus life, campus culture and the urban settings. Social, cultural and educational events are planned for women students, faculty and staff through the center and with the help of the Women’s Network. The network is the support group of women on campus. The center boasts an ever-growing library of textbooks, self-help materials, and fiction in the form of print, audio and video. There is an open-door policy for crisis intervention and personal support.
Officers and Faculty

Board of Trustees ... 195
Administration .. 197
Faculty ... 203
Faculty Emeriti ... 217
Board of Trustees

Officers

Chair of the Board
Robert A. Pritzker
President and Chief
Executive Officer
The Marmon Group, Inc.

Chair of the Policy
Committee
Robert W. Galvin
Chairman of the
Executive Committee
Motorola Inc.

President
Lew Collens

Vice Chair
of the Board
Richard M. Jaffee
Chairman and
Chief Executive Officer
Oil-Dri Corporation
of America

Board Members

Bahman Atefi, Ph.D.
President
IIT Research Institute

Robert A. Cornog
Chairman, President and
Chief Executive Officer
Snap-on Incorporated

Alvin L. Gorman
Chairman of the Board
Power Contracting and
Engineering Corp.

Norbert O. Kaiser
President
Kamco Plastics

William C. Bartholomay
President
Near North
National Group

Casey Cowell
Chairman and President
Durondal, Inc.

Donald E. Goss
Retired Partner
Ernst & Young

Edward L. Kaplan
Chief Executive Officer
and Chairman
Zebra Technologies Corp.

Thomas H. Beeby
Principal
and Director of Design
Hammond Beeby
and Babka, Inc.

James E. Cowie
General Partner
Frontenac Company

Robert L. Growney
President and Chief
Operating Officer
Motorola, Inc.

James Kiley
Managing Director-in-
Charge of Chicago Office
Weiss, Peck and Greer, LLC

Heather M. Bilandic
Civic Leader

Albert A. Cozzi
President and Chief
Operating Officer
Metal Management, Inc.

Randall Hampton
President and Chief
Executive Office
ABN AMRO Asset
Management (USA) LLC

Jules F. Knapp
Chief Executive Officer
Grisham Corp.

Robert D. Blackwell, Sr.
President and Chief
Executive Officer
Blackwell Consulting
Services

Craig J. Duchossois
Chief Executive Officer
Duchossois Industries, Inc.

Theodore E. Hanson
Retired Partner
KPMG Peat Marwick

Kaarina Koskenalusta
President and Chief
The Executives’ Club
of Chicago

Pier C. Borra
Chairman, President and
Chief Executive Officer
CORA Health Services, Inc.

Bryan R. Dunn
President and Chief
Executive Officer
Kinship Corporation

Robert L. Heidrick
Partner
Heidrick & Struggles

Thomas E. Lanctot
Partner
William Blair & Company

Calvin A. Campbell, Jr.
Chairman, President and
Chief Executive Officer
Goodman Equipment
Corporation

Andrew “Flip” Filipowski
Chairman and Chief
Executive Officer
divine interVentures, inc.

James Hill, Jr.
Managing Partner
Hill, Taylor & Company
Certified Public
Accountants

Bruce C. Liimatainen
President
A. Finkl & Sons Co.

S.R. Cho
Chairman
Hyosung Group (Korea)

Marshall B. Front
Chairman
and Managing Director
Trees Barnett
Associates LLC

Donald R. Hollis
President
DRH Strategic
Consulting Inc.

Dirk Lohan, FAIA
President and Chief
Executive Officer
Lohan Associates, Inc.

Martin Cooper
Chairman and Chief
Executive Officer
ArrayComm, Inc.

Michael P. Galvin
President
Galvin Enterprises Inc.

Robert M. Janowiak
Executive Director
International Engineering
Consortium

John W. Madigan
Chairman, President and
Chief Executive Officer
Tribune Co.
Linda Manning
Founding Member
Groupe Manning, LLC

Daniel E. McLean
President and Chief
Executive Officer
MCL Companies

Victor A. Morgenstern
President and Chief
Executive Officer
Harris Associates L.P.

Walter Nathan
Chairman
RTC Industries, Inc.

Robert J. Potter, Ph.D.
President
R.J. Potter Company

Ellen Jordon Reidy
President
America’s Food Technologies, Inc.

John R. Schmidt
Partner
Mayer Brown & Platt

Carole Browe Segal
Vice President,
Civic Affairs
Crate & Barrel

Hoken S. Seki
President
Sussex Enterprises, Inc.

Bernard F. Sergesketter
President
Sergesketter & Associates, Inc.

Paula A. Sneed
Group Vice President,
Kraft Foods and President,
E-Commerce and Consumer Insights and Communications Division
Kraft Foods, Inc.

Fidelis N. Umeh
President and Chief
Executive Officer
SEI Information Technology

William A. VanSanten, Jr.
Partner
Wood, Phillips, VanSanten, Clark & Mortimer

David J. Vitale
Retired Vice Chairman
Bank One Corporation

Barry R. Wallach
U.S. Managing Partner of Operations
Andersen Worldwide

Priscilla Anne “Pam” Walter
Partner
Gardner, Carton & Douglas

Ralph Wanger
President
Wanger Asset Management, L.P

Craig M. Watson
Vice President and Chief Information Officer
FMC Corporation

Norman H. Wesley
Chairman and Chief Executive Officer
Fortune Brands, Inc.

Life Trustees
Vernon Armour
Robert W. Beart
Harold A. Bergen
Kenneth L. Block
Robert D. Cadieux
William F. Crawford
Charles W. Finkl
Jerome S. Gore
William E. Hartmann
Albert K. Hawkes
James S. Kemper, Jr.
John Krehbiel, Jr.
Richard A. Lenon
Homer J. Livingston, Jr.
Gordon R. Lehman
William P. Mahoney
Dr. Thomas L. Martin, Jr.
William B. McCain
Robert B. McDermott
Werner E. Neuman
William W. Parks
Robert L. Raclin
The Honorable Ilana D. Rovner
Dr. Lajos Schmidt
M.A. Self
Charles H. Shaw
Raymond C. Tower
Alexander J. Vogl

Honorary Trustee
Mrs. Lester Armour
Administration

President’s Staff

Lew Collens
B.S., M.A., J.D.
President

David E. Baker
B.A., M.A.
Vice President for External Affairs

Judith M. Carr
Executive Assistant to the President

John Collins
B.S., M.S., Ph.D., P.E.
Vice President for Business and Finance

Stuart Cooper
B.S., Ph.D.
Vice President and Chief Academic Officer of the Main Campus

Michael H. Hites
B.S., M.S., Ph.D.
Chief Technology Officer

Henry H. Perritt, Jr.
S.B., S.M., J.D.
Vice President of the Downtown Campus

Ross D. Pfeiffer
B.A., M.A.
Vice President for International Affairs

Mary Anne Smith
B.A., M.S., J.D.
Vice President, General Counsel, and Secretary to the Board of Trustees

Darsh T. Wasan
B.S., Ph.D.
Vice President for Institutional Advancement

Office of the Vice President and Chief Academic Officer of the Main Campus

Stuart L. Cooper
B.S., Ph.D.
Vice President and Chief Academic Officer of Main Campus

Ali Cinar
B.S., M.Eng., Ph.D.
Dean of the Graduate College and Associate Vice President for Research

Sohair Elbaz
B.A., M.A., M.L.S., Ph.D.
Dean of Libraries

William Enright
B.A., M.A.
Director of Non-Degree Programs

Virginia Foster
B.S., M.S.
Director of Financial Aid

Patricia Grow
Director of Finance for Main Campus

Noreen M. Kozak
Assistant to the Vice President of the Main Campus

Terry Miller
B.A., M.B.A., J.D.
Dean of Undergraduate Admission

M. Ellen Mitchell
B.A., M.A., Ph.D.
Director of the Institute of Psychology

Allan S. Myerson
B.S., M.S., Ph.D.
Dean of Armour College

Donna V. Robertson
B.A., M.Arch.
Dean of the College of Architecture

Elizabeth Sanders
B.S., M.A., Ph.D.
Director of the Office of Information and Institutional Research

Terry H. Shapiro
B.S., Ph.D.
Dean of Student Affairs

Gerard Voland
B.S., M.S., Ph.D.
Interim Dean of the Undergraduate College and Associate Vice President for Undergraduate Education

Jennifer Waters
B.A., M.A.Ed.
Registrar and Director of Student Services

Patrick F. Whitney
B.P.A., M.P.A.
Director of the Institute of Design

Student Affairs

Terry H. Shapiro
B.S., Ph.D.
Dean of Student Affairs

Cheryl Caplan
B.A., M.P.A.
Assistant Dean of Student Affairs

James B. Darrah
B.S.
Director of Athletics and Recreation

Douglas A. Geiger
B.A., M.A.
Associate Director of Housing for Residence Life and Campus Judicial Officer

Coleen Markham
B.S., MS.
Director of Health Services

Stacy R. Newton
Student Affairs Coordinator

Eric Schwister
B.A.
Catholic Campus Minister

Richard Thomas
B.A., M.S.A.
Director of Campus Union and Student Activities

Susan Russell
B.A., M.S.
Interim Director of Counseling Services
Graduate College

Ali Cinar
B.S., M.Eng., Ph.D.
Dean and Associate Vice President for Research

C. Robert Carlson
B.S., M.S., Ph.D.
Associate Dean and Director of Rice Campus

Walter C. Eisenberg
B.A., M.S., Ph.D.
Associate Dean of Academic Affairs

Susanne Feret
B.A., M.B.A.
Director of Business Development for the Research Office

Bess Grossweiner
B.A.
Thesis Examiner

Barbara C. Kozi
B.A.
Educational Services Coordinator for Rice Campus

Glenn Krell
B.A., C.R.A.
Director of the Research Proposal Development Office

Anne Penway
B.A., J.D.
Assistant Dean of Recruitment and Retention

Scott Pfeiffer
B.S., M.B.A.
Director of Graduate Outreach

Mamie Phillips
B.S.Ed., M.P.A.
Assistant Dean of Policies and Records

Holli Pryor-Harris
A.B., M.B.A.
Director of Client Services for IITV

Undergraduate College

Gerard Voland
B.S., M.S., Ph.D.
Associate Vice President for Undergraduate Education and Interim Dean of the Undergraduate College

Irma Dobbins
B.S.
Director of Center for Multicultural Programs

Christine M. Eitel
B.S.
Associate Director of the Undergraduate College

Bruce M. Fisher
B.A., M.S., Ph.D.
Interim Director of Leadership Academy

Jay Fisher
B.S., Ph.D.
Director of Ed Kaplan Entrepreneurial Studies Program

Thomas M. Jacobius
B.S., M.B.A.
Director of Interprofessional Studies

Karen Swenson
B.A., M.B.A.
Director of Graduate Admissions

Ruth Sweetser
B.A., M.A.
Assistant Dean of Business and Industry Relations

Helen Oloroso
B.S., M.S.
Director of Career Development Center

Sharon Quiroz
B.A., M.A., Ph.D.
Director of College Writing Program and Director of Academic Resource Center
Armour College

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree(s)</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamid Arastoopour</td>
<td>B.S., M.S., Ph.D.</td>
<td>Chair of Chemical and Environmental Engineering</td>
</tr>
<tr>
<td>Paul Barrett</td>
<td>B.A., M.A., Ph.D.</td>
<td>Chair of Applied Mathematics</td>
</tr>
<tr>
<td>Kathleen Chappell</td>
<td>B.S., M.S., Ph.D.</td>
<td>Chair of Civil and Architectural Engineering</td>
</tr>
<tr>
<td>William J. Grimshaw</td>
<td>B.S., M.S., Ph.D.</td>
<td>Dean</td>
</tr>
<tr>
<td>Porter Johnson</td>
<td>B.S., M.A., Ph.D.</td>
<td>Interim Chair of Mechanical, Materials and Aerospace Engineering</td>
</tr>
</tbody>
</table>

College of Architecture

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree(s)</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donna V. Robertson</td>
<td>B.A., M.Arch.</td>
<td>Dean</td>
</tr>
<tr>
<td>Anita Anderson</td>
<td>B.S., M.A.</td>
<td>Director of Graham Resource Center</td>
</tr>
<tr>
<td>Marilyn Birden</td>
<td>B.A., M.B.A.</td>
<td>Assistant Dean for Administration and Finance</td>
</tr>
<tr>
<td>Eric Thompson</td>
<td>B.F.A., M.F.A., M.B.A.</td>
<td>Director of Development</td>
</tr>
<tr>
<td>Clint Chapman</td>
<td>B.A.</td>
<td>Coordinator of Academic Affairs</td>
</tr>
</tbody>
</table>

Institute of Design

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree(s)</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patrick F. Whitney</td>
<td>B.F.A., M.F.A.</td>
<td>Director</td>
</tr>
<tr>
<td>John Grimes</td>
<td>B.A., M.S.</td>
<td>Associate Director</td>
</tr>
<tr>
<td>Nora Kyger</td>
<td>B.F.A., M.A.</td>
<td>Director of External Relations</td>
</tr>
</tbody>
</table>

Institute of Psychology

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree(s)</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Ellen Mitchell</td>
<td>B.A., M.A., Ph.D.</td>
<td>Director</td>
</tr>
<tr>
<td>Bruce Fisher</td>
<td>B.A., M.A., Ph.D.</td>
<td>Director of the Center for Research and Service</td>
</tr>
<tr>
<td>Glen O. Geist</td>
<td>B.A., M.S., Ph.D.</td>
<td>Assistant Director</td>
</tr>
<tr>
<td>Jamal Scott</td>
<td>B.S.</td>
<td>Administrative Associate</td>
</tr>
<tr>
<td>Olivia Anderson</td>
<td>B.S.</td>
<td>Director of Development</td>
</tr>
</tbody>
</table>
Office of the Vice President for Business and Finance

John Collins
B.S., M.S., Ph.D., P.E.
Vice President for Business and Finance

Richard Brown
B.A., B.S.E., M.S.E.
Associate Vice President of Facilities and Construction

Kevin Doherty
B.S., C.P.A., J.D.
Associate Vice President for Finance and Controller

Robert Paschen
Manager of Office Services

Jean Bingham
Director of Housing and Auxiliary Services

Abdul Khan
Director of Public Safety

Office of the Chief Technology Officer

Michael Hites
B.S., M.S., Ph.D.
Chief Technology Officer

Kee Choi
B.S.
Manager of Internet Information Services

Jim Karagiannes
B.S., M.S., Ph.D.
Manager of Client Services

Kevin Shalla
B.A., M.S.
Manager of Student Information Services

Virginia Bentley
B.S.
Manager of Telecommunications

Louise Hewitt
B.A., M.S.T.
Director of IIT Online Technical Services

Ibukun Oyewole
B.S.
Manager of Systems Services

Jim Zatar
B.S., M.S.
Manager of Network Services

Ben Bozzeiti
B.A.
Manager of Financial Information Services

Office of the Vice President for External Affairs

David E. Baker
B.A., M.A.
Vice President for External Affairs

Leroy E. Kennedy
B.A.
Associate Vice President for Community Development

Office of the Vice President for Institutional Advancement

Ross D. Pfeiffer
B.A., M.A.
Vice President for Institutional Advancement

Markland G. Lloyd
B.A., M.A., Ph.D.
Associate Vice President for Communications and Marketing

June Poust
B.A.
Director of Major Gifts

Terrence L. Sykora
B.A.
Assistant Vice President for Development

Dorothy Huisman
B.A.
Executive Director of Alumni Relations
Office of the General Counsel

Mary Anne Smith
B.A., M.S., J.D.
Vice President and
General Counsel and
Secretary

José D. Padilla
B.Ed., J.D.
Associate General Counsel

Office of the Vice President for International Affairs

Darsh T. Wasan
B.S., Ph.D.
Vice President

Irwin B. Fieldhouse
B.S., M.S.
Senior Adviser to Joint
IIT/IITRI Research
Collaboration

Ravi Shankar
B.A., M.A., M.S.
Director of International
Student Center

Charles E. Sizer
B.S., M.S., Ph.D.
Director of Moffett
Campus

Mary Dawson
B.S.J.
Associate Vice President
for International Affairs

Office of the Vice President and Chief Academic Officer for the Downtown Campus

Lori Andrews
B.A., J.D.
Associate Vice President
for the Downtown Campus
and Director of the
Institute of Science, Law & Technology

Susan O’Brien
B.A., J.D.
Assistant Vice President
for Communications for
the Downtown Campus

Henry H. Perritt, Jr.
S.B., S.M., J.D.
Dean of Chicago-Kent
College of Law and Vice
President for Downtown
Campus

Dawn Rupcich
B.S.
Assistant Dean of
Administration, Finance,
CLE and Financial Aid

Ronald Staudt
B.S., B.A., J.D.
Associate Vice President
for Law, Business and
Technology

Center for Law and Financial Markets

John A. Wing
B.A., J.D.
Chairman

Jerold Lavin
B.A., J.D.
Managing Director of
Graduate Studies in
Financial Services Law

Pamela Reardon
B.A., M.Ed.
Executive Director

Benjamin Van Vliet
B.A., M.S.
Director of Recruiting
and Advising
Administration

Chicago-Kent College of Law

Henry H. Perritt, Jr.
S.B., S.M., J.D.
Dean of Chicago-Kent
College of Law and Vice
President for Downtown
Campus

Michael Burns
B.A., J.D.
Assistant Dean for
Admissions and Financial
Aid Director of the
Empowerment Program

Molly Warner Lien
B.Mus., J.D.
Director of Legal Research
and Writing Program

Jeffrey Sherman
A.B., J.D.
Co-Director of the
Graduate Program in
Taxation

Harry Ashton
Director of Institutional
Projects and Executive
Assistant to the Dean

Jeanne Kraft
Assistant Dean for
Career Services

Christopher Matheny
Director of Academic
Administration and
Student Affairs and
Registrar

Stephen D. Sowle
B.A., J.D.
Assistant Dean for
Academic Administration

Gerald Brown
B.S.C., J.D.
Co-Director of Graduate
Program in Taxation

Harold J. Krent
A.B., J.D.
Associate Dean for Faculty
and Interprofessional
Activities

Robert A. Ross
B.A., J.D.
Assistant Dean for
Development, Alumnae/i
and Student Affairs

A. Dan Tarlock
A.B., L.L.B.
Co-Director of the Program
in Environmental and
Energy Law

Gary S. Laser
B.B.A., J.D.
Director of Clinical
Education

Charles Rudnick
B.A., J.D.
Assistant Dean of
International Law and
Policy Development

Stuart Graduate School of Business

M. Zia Hassan
B.S., M.S., Ph.D.
Dean

Kenneth Gibson
B.S., B.A., M.B.A.
Director of Information
Technology

Paul Prabhakar
B.Tech., M.B.A., M.S.,
Ph.D.
Director of Fast-Track
M.B.A. Program

Ann Shillinglaw
B.A., M.A.
Director of Development

Martin Bariff
B.S., M.A.S., Ph.D.
Director of E-Commerce
Program

Lynn Miller
B.S., M.A., Ph.D.
Assistant Dean of
Admission and M.B.A.
Program

Bernard Rausch
B.Ch.E., M.S.
Interim Director of Career
Planning and Continuing
Education

John R. Twombly
B.S., M.B.A., Ph.D., C.P.A.
Adviser to Undergraduate
Programs

John F. O. Bilson
B.Ec., M.Ec., Ph.D.
Director of Financial
Markets & Trading
Program

Naomi Miyamoto
B.A.
Manager of M.B.A.
Recruitment

Jerry Seaton
Manager of Registration

Shirlyn Wright
B.S., M.S.
Associate Director of
Employer Relations

Michael Brandys
B.S., M.B.A., M.P.A.
Director of M.B.A. Student
Services and M.B.A.
Adviser

George Nassos
B.S., M.S., M.B.A., Ph.D.
Director of Environmental
Management Program

John Tarini
B.S., M.S., Ph.D.
Director of Marketing
Communication Program
Faculty

Year shown indicates date of initial appointment.

Javad Abbasian
B.S., Abadan Institute of Technology; M.S., Illinois Institute of Technology; Ph.D., Illinois Institute of Technology Research Associate Professor of Chemical and Environmental Engineering, 2000

Susan Johanne Adams
B.A., M.A., University of Wisconsin; J.D., Valparaiso University School of Law Associate Professor of Legal Research and Writing and Director of Writing Services, 1993

Nader Aderangi
B.S., University of Tehran (Iran); M.S., University of Colorado; Ph.D., Illinois Institute of Technology Senior Lecturer of Chemical Engineering and Director of the Undergraduate Laboratory, 1997

Andre B. Adler
B.S., State University of New York-Binghamton; M.S., Purdue University; Ph.D., University of Florida Associate Professor of Applied Mathematics, 1988

Gady Agam
B.S., M.S., Ph.D., Ben-Gurion University Visiting Assistant Professor of Computer Science, 2000

Said Al-Hallaj
B.S., M.S., Jordan University of Science and Technology; Ph.D., Illinois Institute of Technology Research Associate Professor of Chemical and Environmental Engineering, 2000.

Paul R. Anderson
B.S., Purdue University; M.S., University of California-San Diego; Ph.D., University of Washington Associate Professor of Chemical and Environmental Engineering and Director of Rice Campus ChEE Programs, 1986

Lori Andrews
B.A., Yale College; J.D., Yale Law School Professor of Law, Associate Vice President for the Downtown Campus, and Director of the Institute of Science, Law & Technology, 1994

Hamid Arastoopour
B.S., Abadan Institute of Technology (Iran); M.S., Ph.D., G.E., Illinois Institute of Technology Max McGraw Professor of Chemical and Environmental Engineering and Chair of the Department, 1979

David Arditi
B.S., M.S., Middle East Technical University (Turkey); Ph.D., Loughborough University of Technology (England) Professor of Civil and Architectural Engineering, 1981

Victor Avraham Aronov
Ph.D., Institute of Mechanization of Agriculture and Institute of Truck and Tractor Maintenance (Kiev) Associate Professor of Mechanical and Materials Engineering, 1977

Robert Arzbaecher
B.S., Fournier Institute of Technology; M.S., Ph.D., University of Illinois-Urbana-Champaign) Professor of Electrical and Computer Engineering, 1981

Guillermo E. Atkin
B.S., Universidad F. Santa Maria (Chile); Ph.D., University of Waterloo (Canada) Associate Professor of Electrical and Computer Engineering, 1986

Leslie Axelrod
B.S., Washington University; B.S., University of Missouri-Columbia; M.S., M.E.M., Northwestern University Instructor of Electrical and Computer Engineering, 1999

Roya Ayman
B.A., M.A., Ph.D., University of Utah Associate Professor of Psychology and Director of I/O Program, 1983

Katharine K. Baker
B.S., Harvard-Radcliffe College; J.D., University of Chicago Law School Associate Professor of Law, 1993

Martin L. Bariff
B.S., M.A.S., Ph.D., University of Illinois-Champaign-Urbana; Certified Public Accountant Coleman Foundation Associate Professor of Information Resources Management and Director of the Center for Research on the Impacts of Information Systems, 1983

Christopher M. Barlow
B.A., University of Notre Dame; M.S., State University of New York-Buffalo; Ph.D., Case Western Reserve University Assistant Professor of Management, 1995

Ralph Lipsy Barnett
B.S., M.S., Illinois Institute of Technology Professor of Mechanical Engineering, 1969

Paul F. Barrett
B.S., M.A., Loyola University, Ph.D., University of Illinois-Chicago Associate Professor of History and Chair of the Department of Humanities, 1977

Matthew J. Bauer
B.S., M.S., Illinois Institute of Technology Senior Lecturer of Computer Science, 1996
David R. Beam
B.A., Lawrence University; M.A., Ph.D., Northern Illinois University
Associate Professor of Political Science and Director of the Master of Public Administration Program, 1987

Anup K. Behera
B.Tech., Indian Institute of Technology; M.S., Ph.D., University of Illinois-Urbana-Champaign
Lecturer in Electrical and Computer Engineering, 1988

Richard L. Beissinger
B.S., Carnegie Mellon; M.S., Cornell University; D.E.S., Columbia University
Professor of Chemical and Environmental Engineering, 1981

Peter Phillip
Beltemacchi
B.S., M.S., Illinois Institute of Technology
Associate Professor of City and Regional Planning, 1967

Barry Bernstein
B.S., City College of New York; M.A., Ph.D., Indiana University
Professor of Chemical and Environmental Engineering, 1966

John F. O. Bilson
B.Ec., M.Ec., Monash University (Australia); Ph.D., University of Chicago
Professor of Finance, 1995

Virgil Bistriceanu
B.S., M.S., Polytechnic Institute of Bucharest
Instructor in Computer Science, 1994

Eli Blevis
B.M., M.S., Ph.D., Queen’s University
Assistant Professor of Design, 1994

Fred P. Bosselman
B.A., University of Colorado; J.D., Harvard University
Professor of Law, 1991

David Brande
B.A., M.A., Portland State University; Ph.D., University of Washington
Assistant Professor of English, 1996

Ralph L. Brill
B.A., J.D., University of Illinois-Urbana-Champaign
Professor of Law, 1961

Glenn Broadhead
B.A., Los Angeles State College; M.A., Ph.D., University of California-Davis
Associate Professor of English and Director of Technical Communications Program, 2000

Evelyn Brody
B.A., Yale College; J.D., Georgetown University
Law Center
Associate Professor of Law, 1992

Bartram S. Brown
B.A., Harvard University; J.D., Columbia University; Ph.D., Graduate Institute of International Studies
Associate Professor of Law, 1991

Gerald Brown
B.S.C., DePaul University; J.D., University of Chicago
Associate Clinical Professor of Law and Director of Graduate Program in Taxation, 1990

Timothy Brown
B.S.Arch., Clemson University; M.Arch., University of Illinois-Chicago
Studio Professor of Architecture, 1990

Jeffry S. Budiman
B.S., Bandung Institute of Technology (Indonesia); M.S., Illinois Institute of Technology; Ph.D., University of Colorado-Boulder
Associate Professor of Civil and Architectural Engineering, 1986

Grant Byrd Bunker
B.A., Evergreen State College; Ph.D., University of Washington
Associate Professor of Physics and Director of the Biophysics Collaboration Access Team, 1991

Ilene J. Burnstein
B.S., Brooklyn College; M.S., University of Maryland; Ph.D., Illinois Institute of Technology
Associate Professor of Computer Science and Graduate Program Director, 1986

Gruia Calinescu
M.S., University of Bucharest (Romania); Ph.D., Georgia Institute of Technology
Assistant Professor of Computer Science, 2000

C. Robert Carlson
B.A., Augustana College; M.S., Ph.D., University of Iowa
Professor of Computer Science, Associate Dean of the Graduate College, and Director of the Rice Campus, 1984

Kevin Cassel
B.S., Messiah College; M.S., Ph.D., Lehigh University
Assistant Professor of Mechanical and Aerospace Engineering, 1996

John Cesarone
B.S., M.S., University of Illinois; Ph.D., Northwestern University
Lecturer of Mechanical Engineering, 1999

Geoffrey W. Y. Chan
B.Eng., M.Eng., Carleton University (Canada); Ph.D., University of California-Santa Barbara
Motorola Assistant Professor of Electrical and Computer Engineering, 1994

Morris Chang
B.S., Tatung Institute of Technology; M.S., Ph.D., North Carolina State University
Assistant Professor of Computer Science and Engineering, 1995

Howard Stuart Chapman
B.S., J.D., University of Illinois-Urbana-Champaign
Professor of Law, 1971

Leroy Dean Chapman
B.S., Southwestern Oklahoma State University; Ph.D., Purdue University
Associate Professor of Physics and Associate Director of the Center for Synchrotron Radiation Research and Instrumentation, 1995
Patrick Charles
Diplome Par Le
Gouvernement, Ecole
d'Architecture de Nancy
(France); S.M.Arch.S.,
Massachusetts Institute
of Technology. Assistant
Professor of Architecture,
2000

Donald Chmielewski
B.S., Illinois Institute of
Technology; M.S., Ph.D.,
University of California-
Los Angeles
Assistant Professor
of Chemical and
Environmental
Engineering, 2000

Ali Cinar
B.S., Robert College
(Turkey); M.Eng., Ph.D.,
Texas A & M University
Professor of Chemical
and Environmental
Engineering, Associate
Vice President for
Research, and Dean of the
Graduate College, 1982

Herek L. Clock
B.S., Massachusetts
Institute of Technology;
Ph.D., University of
California-Berkeley
Assistant Professor of
Mechanical and Aerospace
Engineering, 1999

Carrie Clancy,
Capt. USAF*
B.S., Miami University;
M.A., University of Colorado
Assistant Professor of
Aerospace Studies, 1997

Liam Coffey
B.A., Trinity College
(Ireland); Ph.D.,
University of Chicago
Associate Professor of
Physics, 1990

Lewis Collins
B.S., M.A., University of
Illinois-Urbana-
Champaign; J.D.,
University of Chicago
Professor of Law
and President, 1970

Susan Conger-Austin
B.A., Stanford University;
M.Arch., Princeton
University
Studio Associate Professor
of Architecture and
Graduate Adviser, 1993

Richard James Conviser
B.A., J.D., University of
California; Dr. Jur.,
University of Cologne
(Germany)
Professor of Law, 1973

David I. Coogan
B.A., The College of
Wooster; M.A., Ph.D.,
State University of
New York-Albany
Assistant Professor of
English, 1995

Stuart Cooper
B.S., Massachusetts
Institute of Technology;
Ph.D., Princeton
University
Phillip Danforth Armour
Professor of Engineering
and Vice President and
Chief Academic Officer for
the Main Campus, 1998

Douglas J. Cork
B.S., M.S., Ph.D.,
University of Arizona
Professor of Biology, 1980

Jacob J. Corré
A.B., University of Chicago;
J.D., Yale University
Visiting Assistant
Professor, 1996

James R. Dabbett
B.A., M.S., Indiana
University
Senior Lecturer in
English, 1989

Michael Davis
B.A., Western Reserve
University; M.A., Ph.D.,
University of Michigan
Professor of Philosophy,
1986

Johnathan Dec promot
B.A., University of Illinois;
J.D., University of
Colorado School of Law
Assistant Professor of
Clinical Practice, 2000

Paul Henry DeForest
B.S., Ph.D., Georgetown
University
Associate Professor of
Political Science, 1969

Dirk Denison
B.A., M.B.A., Illinois
Institute of Technology;
M. Arch., Harvard
University
Studio Professor of
Architecture, 1988

Eduardo De Santiago
B.S., Illinois Institute of
Technology; MS., Ph.D.,
Stanford University
Assistant Professor of
Civil and Architectural
Engineering, 1997

Phillip Dickens
B.S., St. Andrews
Presbyterian College;
M.S., University of
Virginia; Ph.D.,
University of Virginia
Assistant Professor of
Computer Science, 1996

Nicholas A. Dimakis
B.A., National University
of Athens (Greece);
M.S., University of Salford;
Ph.D., Illinois Institute
of Technology
Research Assistant
Professor of Physics, 1999

Graeme Dinwoodie
LLB., University of
Glasgow (Scotland); LL.M.,
Harvard Law School; J.S.D.,
Columbia Law School
Professor of Law, 2000

Rollin Cumming Dix
B.S., M.S., Ph.D.,
Purdue University
Professor of Mechanical
and Aerospace
Engineering, 1964

Marek Dollar
M.Sc., Ph.D., D.Sc.,
University of Mining
and Metallurgy (Poland)
Professor of Materials
Engineering, 1988

Jinqiao Duan
B.S., Wuhan University
(Japan); M.S., University
of Massachusetts-
Amherst; Ph.D.,
Cornell University
Associate Professor of
Applied Mathematics, 2000

Christopher R. Duohon,
Capt., USAF*
B.S., U.S. Air Force
Academy
Regional Director of
Admissions, 1997

Warren Stanley
B.A., Lehigh University;
M.A., Duke University;
Ph.D., Brown University
Professor of Applied
Mathematics, 1965

Howard C. Eglit
B.A., University of
Michigan; J.D., University
of Chicago
Professor of Law, 1975

Susanne Ehrenberg
A.B., Williams College;
J.D., University of Chicago
Professor of Legal Research
and Writing, 1989
Sonia Green
B.A., M.A., J.D.,
University of Chicago
Assistant Professor of Law, 1996

Sanford N. Greenberg
A.B., Princeton University; M.A., Ph.D., University of California-Berkeley; J.D., George Washington University
Associate Professor of Law and Director of Iliana Diamond Rovner Program in Appellate Advocacy, 1994

Peter H. Greene
A.B., Amherst College; Ph.D., University of Chicago
Associate Professor of Computer Science, 1974

Ellen Grimes
B.A., M.B.A., University of Chicago; M.Arch., University of Illinois-Urbana-Chicago
Instructor of Architecture, 1997

Suzanne Greene
B.A., Barnard College; M.A., Ph.D., Columbia University; J.D., University of Chicago
Visiting Assistant Professor of Law, 1999

John Ricks Grimes
B.A., University of Illinois-Urbana-Champaign; M.S., Illinois Institute of Technology
Associate Director and Associate Professor of Photography, 1974

William J. Grimshaw
B.A., University of Chicago; M.A., Ph.D., University of Illinois-Urbana-Champaign
Professor of Political Science and Chair of the Social Sciences Department, 1978

Vivien C. Gross
B.A., Northwestern University; M.A., University of Illinois-Urbana-Champaign; J.D., Indiana University-Bloomington Clinical Professor of Law, 1979

Sidney Aaron Guralnick
B.S., Drexel Institute of Technology; M.S., Ph.D., Cornell University Perlestein Distinguished Professor of Engineering, 1958

David Grossman
B.S., Clemson University; M.S., American University; Ph.D., George Mason University
Assistant Professor of Computer Science, 1999

Philip Norman
Hablutzel B.A., Louisiana State University; M.A., J.D., University of Chicago Professor of Law, 1971

Kenneth B. Hall, Cmdr, USN*
B.S., M.S., U.S. Naval Academy; M.S., Illinois Institute of Technology Postgraduate School Associate Professor of Naval Science, 1998

Warren Clayton Hall
B.S., A.M., University of Missouri; M.S., Ph.D., University of Illinois Associate Professor of Economics, 1966

Charles Hamilton
B.S., M.A.S., Ph.D., University of Illinois-Urbana-Champaign; Certified Public Accountant Clinical Associate Professor of Accounting, 1991

Sarah Harding
B.A., McGill University; L.L.B., Dalhousie University; B.Ch., Oxford University; L.L.M., Yale Law School Assistant Professor of Law, 1995

Kevin Patrick Harrington
B.A., Colgate University; M.A., Ph.D., Cornell University Professor of Architectural History, 1978

Steven L. Harris
B.A., J.D., University of Chicago Professor of Law, 1996

John F. Hartray
B.Arch., Cornell University Adjunct Professor of Architecture, 1993

Richard L. Hasen
A.B., University of California-Berkeley; M.A., J.D., Ph.D., University of California-Los Angeles Assistant Professor of Law, 1994

M. Zia Hassan
B.Sc., University of Panjab (Pakistan); M.S., Ph.D., Illinois Institute of Technology Professor of Industrial Management and Dean of the Stuart School of Business, 1960

Greg Hayman, LTC, USAF*
B.S., University of Toledo; M.A., Ball State University Professor of Aerospace Studies, 1996

Barbara Ruth Heller
A.B., University of Chicago; B.S., Roosevelt University; M.S., Ph.D., University of Chicago Associate Professor of Applied Mathematics, 1980

John Heskett
B.Sc. (Econ), London School of Economics Professor of Design, 1989

Rachel Heyman
B.A., University of Pennsylvania; J.D., University of Chicago Visiting Assistant Professor of Law, 1999

Steven J. Heyman
A.B., Harvard College; J.D., Harvard Law School Associate Professor of Law, 1989

John Hilburger
B.A., M.Ed., University of Illinois-Urbana-Champaign; Ph.D., Illinois Institute of Technology Assistant Professor of Psychology, 1997

Claire Hill
B.A., M.A., University of Chicago; J.D., American University; LL.M., J.S.D., Columbia University Assistant Professor of Law, 1999

Michael Hites
B.S., University of Arizona; M.S., University of Illinois-Urbana-Champaign; Ph.D., Illinois Institute of Technology Research Assistant Professor of Mechanical and Aerospace Engineering and Chief Technology Officer, 1996

* Member of the faculty of IIT by election according to the provision of Article 1, Section 2 of the IIT Faculty Constitution.
Timothy Holbrook
B.S., North Carolina State University; J.D., Yale Law School
Visiting Associate Professor, 2000

Thomas M. Holsen
B.S., M.S., Ph.D., University of California-Berkeley
Associate Professor of Chemical and Environmental Engineering, 1988

Cynthia Hood
B.S., Rensselaer Polytechnic Institute; M.S., Stevens Institute of Technology; Ph.D., Rensselaer Polytechnic Institute
Assistant Professor of Computer Science and Engineering, 1996

Joyce Hopkins
B.A., McGill University; M.A., Tufts University; Ph.D., University of Pittsburgh
Associate Professor of Psychology, 1992

Gerald Horn
Studio Professor of Architecture, 1973

David Charles Hovey
B.Arch., M.S., Illinois Institute of Technology
Associate Professor of Architecture, 1969

Andrew Howard
B.A., Pomona College; Ph.D., University of California-San Diego
Associate Professor of Biology and Director of the Industrial Macromolecular Crystallography Association Collaborative Access Team, 1995

Margaret Hellie Huyck
A.B., Vassar College; M.A., Ph.D., University of Chicago
Professor of Psychology, 1969

Tomoko Ichikawa
B.A., International Christian University (Japan); M.S., Illinois Institute of Technology
Visiting Assistant Professor of Design, 1994

Thomas Charles Irving
B.Sc., M.Sc., Ph.D., University of Guelph (Canada)
Assistant Professor of Biology and Associate Director of the Biophysics Collaborative Access Team, 1994

Ivan Ivanov
M.Sc., Sofia University (Bulgaria); Ph.D. Moscow State University (Russia)
Research Associate Professor of Physics, 2001

Kamyar Jabbari
B.S., Towson State University; M.B.A., University of Chicago
Lecturer in Finance, 1996

Peter Y. Johnson
B.S., University of Illinois-Urbana-Champaign; Ph.D., Massachusetts Institute of Technology
Professor of Chemistry, 1976

Porter Wear Johnson
B.S., Case Institute of Technology; M.A., Ph.D., Princeton University
Professor of Physics and Interim Chair of the Department of Mathematics and Science Education, 1969

John Scott Kallend
B.A., M.A., Ph.D., Cambridge University (England)
Professor of Materials Engineering and Senior Adviser to the Dean of Armour College for Curriculum and Assessment, 1978

Serop Kalpakjian
B.Sc., Robert College (Turkey); S.M., Harvard University; S.M., Massachusetts Institute of Technology
Professor of Mechanical and Materials Engineering, 1963

Daniel M. Kaplan
B.A., Haverford College; Ph.D., State University of New York-Stony Brook
Associate Professor of Physics, 1994

James L. Karagiannes
B.S., Loyola University; Ph.D., Illinois Institute of Technology
Lecturer of Physics and Manager of Client Services for Computing and Network Services, 1993

Capt. Timothy Karagias
B.S., Hawaii Pacific University; M.S., Air Force Institute of Technology
Assistant Professor of Aerospace Studies, 1999

Chris Karidis
B.Arch., Illinois Institute of Technology
Studio Professor of Architecture, 1974

Lawrence Keeley
B.A., University of Michigan
Visiting Assistant Professor of Design, 1994

Jeffrey D. Keho, CAPT, U.S. Navy
B.S., U.S. Naval Academy; M.A., Naval War College; M.A. Solvey Regina; M.A., Pepper Dine University.
Professor of Naval Science, 2000

Pamela Kenta
B.A., University of Illinois; J.D., Illinois Institute of Technology
Visiting Assistant Clinical Professor, 1995

Nazrin R. Khalili
B.Sc., M.S.P.H., Tehran University (Iran); Ph.D., Illinois Institute of Technology
Assistant Professor of Chemical and Environmental Engineering and Director of Environmental Management Program, 1995

M. Ishaque Khan
Ph.D., Indian Institute of Technology (India)
Assistant Professor of Chemistry, 1994

C. Jotin Khisty
B.S., Nagpur University (India); M.S., M.C.P., University of Cincinnati; Ph.D., Ohio State University
Professor of Civil and Architectural Engineering, 1990

Richard Kling
B.A., University of Illinois-Chicago; J.D., Northwestern University School of Law
Clinical Professor of Law, 1981
Thomas William Knowles
B.S., Purdue University;
M.B.A., Ph.D., University of Chicago
Professor of Management Sciences and Operations Management, 1969

Bogdan Korel
M.S., Technical University of Kiev; Ph.D., Oakland University
Associate Professor of Computer Science and Engineering, 1994

George Koutsogiannakis
B.S., M.S., M.B.A., DePaul University; M.S., Illinois Institute of Technology
Instructor of Computer Science, 2000

George Durham Kraft
B.S., Massachusetts Institute of Technology; M.S., Ph.D., Case Institute of Technology
Associate Professor of Information Management, 1968

Ed Kraus
B.A., University of Michigan; J.D., Georgetown University
Law Center
Assistant Professor of Clinical Practice, 1999

Robert Krawczyk
B.Arch., University of Illinois-Chicago
Studio Lecturer of Architecture, 1993

Harold J. Krent
A.B., Princeton University;
J.D., New York University School of Law
Professor of Law and Associate Dean for Faculty and Interprofessional Activities, 1994

Ron Krueck
B.Arch., Illinois Institute of Technology
Studio Professor of Architecture, 1992

Sudhir Kumar
B.S., M.S., Agra University (India); M.S., Indian Institute of Science; Ph.D., The Pennsylvania State University
Research Professor of Mechanical Engineering, 1995

Robert Franklin Ladenson
B.A., University of Wisconsin; Ph.D., The Johns Hopkins University; J.D., DePaul University
Professor of Philosophy, 1969

Chow S. lam
B.S., M.S.Ed., University of Wisconsin-Whitewater; M.S., Ph.D., University of Wisconsin-Madison
Professor of Psychology and Director of Rehabilitation Program, 1985

Peter David land
A.A. Dipl., M.Arch., Carnegie Institute of Technology; M.C.P., Yale University
Professor of City and Regional Planning, 1976

Nina A Langdon
M.S., Leningrad State University; Ph.D., Civil Engineering Institute
Senior Lecturer of Applied Mathematics, 1998

Steven J. Larson, Capt., USAF*
B.A., B.S., North Dakota State University; M.A., Webster University
Assistant Professor of Aerospace Studies, 1997

Gary S. Laser
B.B.A., J.D., University of Miami
Associate Professor of Law and Director of Clinical Education, 1975

Robert D. Laurent
B.A., University of California-Berkeley; Ph.D., University of Chicago
Visiting Associate Professor of Economics and Finance, 1998

Laurie Leader
A.B., Washington University; J.D., Cleveland-Marshall College of Law
Associate Professor of Clinical Practice, 1999

Leon Lederman
B.A., City College of New York, Ph.D., Columbia University
Pritzker Professor of Science, 1992

Christopher Leslie
B.A., University of California-Los Angeles; M.P.P, Kennedy School of Government, Harvard University; J.D., Boalt Hall Law School, University of California-Berkeley
Assistant Professor of Law, 1998

Xiang-Yang Li
B.E., Tsinghua University; M.S., University of Illinois
Assistant Professor of Computer Science, 2000

Xiaofan Li
B.A., Zhejiang University;
M.A., University of California-Los Angeles; J.D., UCLA
Assistant Professor of Applied Mathematics, 1999

Molly Warner lien
B.Mus., University of Miami; J.D., Emory University
School of Law
Assistant Professor of Law and Director of Legal Research and Writing Program, 1984

Henry Robert linden
B.S., Georgia Institute of Technology; M.Ch.E., Polytechnic Institute of Brooklyn; Ph.D., Illinois Institute of Technology
Max McGraw Professor of Energy and Power Engineering and Management and Director of Energy + Power Center, 1954

Nancy Livingston
B.A. Wellesley College; J.D., DePaul University; LL.M., New York University
Assistant Professor of Clinical Practice, 1995

Joseph Lawrence
B.E., M.E., Ph.D., The City College of New York
Professor of Electrical and Computer Engineering, 1976

James W. Longworth
B.S., Ph.D., Sheffield University (England)
Associate Professor of Physics, 1983

Arthur Richard Lubin
B.S., Michigan State University; M.A., Ph.D., University of Wisconsin
Associate Professor of Applied Mathematics, 1975

* Member of the faculty of IIT by election according to the provision of Article 1, Section 2 of the IIT Faculty Constitution.
Eric Lum
B.A., University of British Columbia (Canada);
M.Arch., University of California-Berkeley;
M.Des.S., Harvard Graduate School of Design;
Ph.D., Massachusetts Institute of Technology.
Assistant Professor of Architecture, 1999

Peter Lykos
B.S., Northwestern University; Ph.D.,
Carnegie Institute of Technology
Professor of Chemistry, 1955

Martin H. Malin
B.A., Michigan State University; J.D., George Washington University
Professor of Law and
Director of Institute for Law and the Workplace, 1980

Braja K. Mandal
B.Sc., University of Calcutta (India); M.Sc.,
M.Tech., Ph.D., Indian Institute of Technology
Associate Professor of Chemistry, 1991

Alexander Manov
B.A., M.S., University of Sofia (Bulgaria)
Senior Lecturer in
Computer Science, 1993

Hussein Mansy
B.S., M.S., Cairo University (Egypt); Ph.D., Illinois Institute of Technology
Research Associate
Professor Mechanical and Aerospace Engineering, 1999

Nancy Marder
B.A., Yale College; M.Ph.,
University of Cambridge;
J.D., Yale Law School
Associate Professor of Law, 1999

David Maslanka
B.A., St. Xavier University;
M.S., Ph.D., Illinois Institute of Technology
Senior Lecturer in Applied Mathematics and Associate Director of Academic Resource Center, 1992

Katherine McCoy
B.A., Michigan State University
Senior Lecturer of Design, 1995

Michael McCoy
B.A., Michigan State University, M.A., Wayne State University
Senior Lecturer of Design, 1995

James W. McGee, III
B.S., Jackson State University; Ph.D., Auburn University
Assistant Professor of Applied Mathematics, 2000

Keith E. McKee
B.S., M.S., Ph.D., Illinois Institute of Technology
Director of Manufacturing Technology and Professor in Armour College, 1993

Fred R. McMorris
B.S., Beloit College; M.A., University of California; Ph.D., University of Wisconsin-Milwaukee
Professor of Applied Mathematics and Chair, 1999

Kevin P. Meade
B.S., M.S., Illinois Institute of Technology; Ph.D., Northwestern University
Professor of Mechanical Engineering, 1982

Ahmed Cherif Megri
B.S., Institute of Civil Engineering of Constantine; M.S., Ph.D., Thermal Engineering Centre of INSA (France)
Assistant Professor of Civil and Architectural Engineering, 2000

Nick Menhart
B.Sc., University of Waterloo; Ph.D., University of Waterloo
Assistant Professor of Biology, 2000

Charles T. Merbitz
B.S., University of Illinois-Chicago; M.A., Ph.D., University of Florida
Associate Professor of Psychology and Director of the University Disability Resources and Educational Development Center, 1990

Jeffery P. Mills
B.S., Northwestern University; M.S., Ph.D., Illinois Institute of Technology
Research Associate Professor of Electrical and Computer Engineering, 1987

Thomas J. Misa
S.B., Massachusetts Institute of Technology; M.A., Ph.D., University of Pennsylvania
Associate Professor of History, 1987

M. Ellen Mitchell
B.A., Hamilton/Kirkland College; Ph.D., University of Tennessee
Associate Professor of Psychology, 1987

Michael Modica
B.S., Illinois Institute of Technology; M.S., Ph.D., University of Chicago
Lecturer in Financial Markets, 1996

Capt. Joseph P. Moehlmann
B.S., US Air Force Academy
Assistant Professor of Aerospace Studies, 1999

Jamshid Mohammadi
B.S., M.S., University of Teheran (Iran); M.S., Ph.D., University of Illinois-Urbana-Champaign
Professor of Civil and Architectural Engineering and Chair, 1979

Scott Morris
B.A., University of Northern Iowa; M.S., Ph.D., University of Akron
Assistant Professor of Psychology, 1993

Timothy Irwin Morrison
B.A., Western Michigan University; Ph.D., University of Illinois-Urbana-Champaign
Professor of Physics and Director of the Center for Synchrotron Radiation Research and Instrumentation, 1987

Demetrios J. Moschandreass
B.S., Stetson University;
M.S., University of Kentucky; M.S., Ph.D., University of Cincinnati
Professor of Chemical and Environmental Engineering, 1991

Sheldon Mostovoy
B.S., Ph.D., Illinois Institute of Technology
Associate Professor of Mechanical and Materials Engineering, 1978
Carl Mueller
B.S., Washington University; M.S., Illinois Institute of Technology; Instructor of Computer Science, 1999

Debbie Musiker
B.A., Princeton University, J.D., Boston University Lecturer of Law, 1996

Charles D. Musselman, Jr., Capt USAF
B.S., Pennsylvania State University; M.B.A., Colorado State University Assistant Professor of Aerospace Studies, 1998

Allan S. Myerson
B.S., Columbia University; M.S., Ph.D., University of Virginia Professor of Chemical Engineering and Dean of Armour College of Engineering and Science, 2000

Hassan M. Nagib
B.S., M.S., Ph.D., Illinois Institute of Technology John T. Rettaliata
Distinguished Professor of Mechanical and Aerospace Engineering and IITRI Chief Scientist, 1971

Sheldon Harvey Nahmod
A.B., University of Chicago; L.L.B., L.L.M., Harvard University Distinguished Professor of Law, 1977

Sudhakar E. Nair
B.Sc., Regional Engineering College (India); M.E., Indian Institute of Science; Ph.D., University of California-San Diego Professor of Mechanical and Aerospace Engineering and Interim Chair, 1977

Dale Nance
B.A., Rice University; J.D., Stanford University; M.A., University of California Professor of Law, 1989

Philip G. Nash
B.S., City College of London Polytechnic; Ph.D., Queen Mary College of London University (England) Professor of Materials Engineering and Director of Thermal Processing Technology Center, 1981

John A. Nestor
B.E.E., Georgia Institute of Technology; M.S.E.E., Ph.D., Carnegie-Mellon University Associate Professor of Electrical and Computer Engineering, 1987

Benjamin Nicholson
M. Arch., Cranbrook Academy of Art Studio Professor of Architecture, 1990

Alexander Nikolov
B.S., Ph.D., University of Sofia (Bulgaria) Research Professor of Chemical Engineering, 1991

Christena E. Nippert-Eng
B.A., State University of New York at Cortland; M.A., Temple University; Ph.D., State University of New York-Stony Brook Associate Professor of Sociology, 1994

Kenneth Eugene Noll
B.S., Michigan Technological University; M.S., Ph.D., University of Washington Professor of Chemical and Environmental Engineering, 1975

Terrence A. Norton
B.A., University of Notre Dame; J.D., DePaul University Clinical Professor of Law, 1992

James E. Novak
B.S., M.S., Illinois Institute of Technology Senior Lecturer of Engineering Graphics, 1994

John Richard O'Leary
B.S., M.S., Illinois Institute of Technology; Ph.D., University of Texas-Austin Associate Professor of Civil and Architectural Engineering and Associate Chair, 1980

Ratko Orlandic
Ph.D., University of Virginia Assistant Professor of Computer Science, 1998

Justin Orlich, LT
U.S. Navy B.S., Naval Academy Assistant Professor of Naval Science, 2000

Charles Lewis Owen
B.S., Purdue University; M.S., Illinois Institute of Technology Distinguished Professor of Design, 1965

Krishna Reddy Pagilla
B.E., Osmania University (India); M.S., University of Oklahoma; Ph.D., University of California-Berkeley Assistant Professor of Chemical and Environmental Engineering, 1995

Anthony Paquin
B.A., Assumption College; M.S., San Diego State University; Ph.D., Texas A & M University Assistant Professor of Psychology, 1997

Satish J. Parulekar
B.Ch.E., University of Bombay (India); MS., University of Pittsburgh; Ph.D., Purdue University Professor of Chemical and Environmental Engineering and Associate Chair for Graduate Affairs, 1985

Annie Pedret
B.Sc., University of Toronto (Canada); B.Arch., University of British Columbia (Canada); S.M.Arch.S., Ph.D., Massachusetts Institute of Technology. Visiting Assistant Professor of Architecture, 2000

Victor Perez-Luna
B.S., MS., University of Guadalajara (Mexico); Ph.D., University of Washington Assistant Professor of Chemical and Environmental Engineering, 2000

Boris Pervan
B.S., University of Notre Dame; M.S., California Institute of Technology; Ph.D., Stanford University Assistant Professor of Mechanical and Aerospace Engineering, 1999
Henry H. Perritt, Jr.
S.B., Massachusetts
Institute of Technology; S.M., Massachusetts
Institute of Technology Sloan School; J.D.,
Georgetown University
Professor of Law, Vice President and Chief
Academic Officer for the Downtown Campus, and
Dean of Chicago-Kent College of Law

Scott Peters
B.A., Macalester College; J.D., Washington
University; Ph.D.,
University of Illinois-Chicago
Senior Lecturer of Political Science and Chair of the
Pre-Law Advisory Committee, 1993

Sharon Helmer
Poggenpohl
B.S., M.S., Illinois
Institute of Technology
Associate Professor of Design and Head
of the Institute of Design
Communication Center, 1993

Eli A. Port
B.S., Roosevelt University;
M.S., Northwestern University
Research Associate
Professor of Physics and Co-Director of the Health Physics Program, 1998

Robert William Porter
B.S., University of Illinois-Urbana-
Champaign; M.S., Ph.D.,
Northwestern University
Professor of Mechanical and Aerospace Engineering, 1966

Margaret Power
B.A., Georgetown
University; M.A., San Francisco State University;
Ph.D., University of Illinois
Assistant Professor of History, 2000

Paul R. Prabhaker
B.Tech., M.B.A., Indian
Institute of Technology
(India); MS., Ph.D.,
University of Rochester
Associate Professor of Marketing, 1992

Jai Prakash
B.S., M.S., Master of Philosophy, University of Delhi (India); Ph.D., Case Western Reserve University
Associate Professor of Chemical and Environmental Engineering, 1998

Bob Price
B.A., Texas Christian
University; M.A.,
University of Texas-Arlington; Ph.D.
University of Texas-Austin
Assistant Professor of Sociology, 1994

Greg Prygrocki
B.I.D., University of
Manitoba (Canada);
M.V.A., University of
Alberta (Canada)
Associate Professor of Design, 1987

Gregory J. Pulliam
B.A., Memphis State
University; M.A., Ph.D.,
University of Missouri
Senior Lecturer of English and Associate Director for Undergraduate Programs in Technical Communications, 1993

Charles Pycha
B.F.A., M.F.A., University of Illinois-Urbana-
Champaign
Visiting Assistant Professor of Design, 1993

Sharon Guiroz
B.A., University of Kansas;
M.A., University of
Michigan; Ph.D., Wayne
State University
Assistant Professor of English, Director of the Academic Resource Center, and Director of Communications Across the Curriculum, 1997

Nambury Raju
B.A., Madras University
(India); M.S. (Psyc), Purdue University; M.S., Ph.D., Illinois Institute of Technology
Distinguished Professor of Psychology and Senior Technical Adviser of the Center of Psychological Services, 1996

Ganesh Raman
B.T., Indian Institute of Technology (India); MS., Cleveland State University; Ph.D., Case Western Reserve University
Associate Professor of Mechanical and Aerospace Engineering, 1999

VC Ramesh
B.Tech., Indian Institute of Technology (India); M.S., North Carolina State University; Ph.D., Carnegie Mellon University
Associate Professor of Electrical and Computer Engineering, 1994

Bernard A. Rausch
B.Ch.E., University of the City of New York; M.S., Stevens Institute of Technology
Lecturer of Marketing and Interim Director of Career Planning and Continuing Education, 1986

Andrea Reif
B.S., University of Houston; M.A., Rice University; Ph.D.,
University of Houston
Assistant Professor of Applied Mathematics, 1999

Edward Reingold
B.S., Illinois Institute of Technology; M.S., Ph.D.,
Cornell University
Professor of Computer Science and Chair, 2000

Michele Baker
Richardson
B.A., Brown University;
J.D., Yale Law School
Assistant Professor of Law, 1994

James Roberge
B.S., M.S., Ph.D.,
Northwestern University
Associate Professor of Computer Science, 1988

Donna V. Robertson
B.A., Stanford University;
M.Arch., University of Virginia
Associate Professor of Architecture and Dean of the College of Architecture, 1996

Sylvia Roth
B.A., Rice University;
M.A., Ph.D., Texas A&M University
Assistant Professor of Psychology, 1996
Peter Roesch
Ingenieur fur Hochbau,
Staats bauchule Coburg
(Germany); M.S. Arch.,
Illinois Institute of
Technology
Studio Professor of
Architecture, 1980

George D. Sadler
B.S., Florida State
University; M.S., Brigham
Young University; Ph.D.,
Purdue University
Research Professor of Food
Packaging, 1992

Lori Rokicki
B.A., University of Toledo;
M.S., Ph.D., Ohio
University
Assistant Professor
of Psychology, 1996

Julie Schrager
A.B., Harvard/Radcliffe
College; J.D., University
of Chicago Law School
Visiting Assistant
Professor of Law, 1999

John David Root
B.A., University of Notre
Dame; M.A., Ph.D.,
Indiana University
Professor of History, 1969

George Schipporeit
Associate Professor
of Architecture, 1980

Mark Rosen
B.A., Yale College; J.D.,
Harvard Law School
Assistant Professor of Law,
1999

Jay D. Schieber
Ph.D., University of
Wisconsin-Madison
Associate Professor of
Chemical and
Environmental
Engineering, 1995

Robert Mark Roth
B.S., Brooklyn College;
Ph.D., Brandeis University
Professor of Biology, 1968

Robert C. Schleser
B.A., Rutgers University;
M.S., Ph.D., Memphis
State University
Professor of Psychology,
1982

Howard Arnold Rubin
S.B., Massachusetts
Institute of Technology;
Ph.D., University of
Maryland
Professor of Physics and
Associate Chair, 1966

Warren Stanley
Schmaus
A.B., Princeton University;
M.A., Ph.D., University
of Pittsburgh
Professor of Philosophy,
1980

David Stewart Rudstein
B.S., L.L.M., University
of Illinois-Urbana-
Champaign; J.D.,
Northwestern University
Professor of Law, 1973

Kenneth Robert Schug
B.A., Stanford University;
Ph.D., University of
Southern California
Professor of Chemistry
and Associate Chair, 1956

Francisco Ruiz
B.S.M.E., Universidad
Politecnica de Madrid
(Spain); M.E., Ph.D.,
Carnegie Mellon
University
Associate Professor of
Mechanical and Aerospace
Engineering, 1987

Cesar Augusto
Sciammarella
Dipl. Eng. C.E., Buenos
Aires University
(Argentina); Ph.D., Illinois
Institute of Technology
Research Professor of
Mechanical and Materials
Engineering, 1972

Steve Sato
B.S.M.E., University of
Illinois; M.E.M.,
Northwestern University;
M.Des., Illinois Institute
of Technology
Visiting Lecturer
of Design, 1995

H. Larry Scott
B.S., Ph.D., Purdue
University
Professor of Physics and
Chair, 2000

Ulica Segerstrale
Fil., Pol., University of
Helsinki (Finland);
M.A., University of
Pennsylvania; Ph.D.,
Harvard University
Professor of Sociology, 1988

Carlo U. Segre
B.S. (Physics), B.S.
(Chemistry), University of
Illinois-Urbana-
Champaign; M.S., Ph.D.,
University of California-
San Diego
Associate Professor of
Physics and Chemistry, 1983

J. Robert Selman
Ingenieur in Chemical
Technology, Technical
University Delft
(Netherlands); M.S.,
University of Wisconsin;
Ph.D., University of
California-Berkeley
Professor of Chemical
and Environmental
Engineering and Director
of the Center for Electro-
chemical Science and
Engineering Center, 1975

Mohammad
Shahidehpour
B.S., Arya-Mehr
University of Technology
(Iran); M.S., Ph.D.,
University of Missouri-
Columbia.
Professor of Electrical and
Computer Engineering,
1983

David Carold Sharpe
B.S., B.S.Arch., Tuskegee
Institute; B.S.Arch., M.S.
Arch., Illinois Institute
of Technology
Associate Professor of
Architecture, 1962
<table>
<thead>
<tr>
<th>Name</th>
<th>Degrees and Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Dan Tarlock</td>
<td>A.B., LL.B., Stanford University</td>
</tr>
<tr>
<td></td>
<td>Distinguished Professor of Law and Director of Program on Environmental and Energy Law, 1981</td>
</tr>
<tr>
<td>Fouad A. Teymour</td>
<td>B.Sc., M.Sc., Cairo University (Egypt); Ph.D., University of Wisconsin-Madison</td>
</tr>
<tr>
<td></td>
<td>S.C. Johnson Polymer Associate Professor of Chemical and Environmental Engineering and Associate Chair of Undergraduate Affairs, 1992</td>
</tr>
<tr>
<td>A. Dan Tarlock</td>
<td>A.B., LL.B., Stanford University</td>
</tr>
<tr>
<td></td>
<td>Distinguished Professor of Law and Director of Program on Environmental and Energy Law, 1981</td>
</tr>
<tr>
<td>Fouad A. Teymour</td>
<td>B.Sc., M.Sc., Cairo University (Egypt); Ph.D., University of Wisconsin-Madison</td>
</tr>
<tr>
<td></td>
<td>S.C. Johnson Polymer Associate Professor of Chemical and Environmental Engineering and Associate Chair of Undergraduate Affairs, 1992</td>
</tr>
<tr>
<td>David C. Thomas</td>
<td>A.B., Kenyon College; J.D., University of Michigan Law School</td>
</tr>
<tr>
<td></td>
<td>Clinical Professor of Law, 1979</td>
</tr>
<tr>
<td>Paul Amandus Thomas</td>
<td>B.S.A., M.S., Illinois Institute of Technology Associate Professor of City and Regional Planning, 1958</td>
</tr>
<tr>
<td>Nick T. Thomopoulos</td>
<td>B.S., M.A., University of Illinois-Urbana-Champaign; Ph.D., Illinois Institute of Technology Professor of Management Sciences, 1966</td>
</tr>
<tr>
<td>Judith Ann Todd</td>
<td>B.A., M.A., Ph.D., Cambridge University (England) Professor of Mechanical and Materials Engineering, Iron and Steel Society Professor, Associate Chair of Metallurgical and Materials Engineering, and Director of Midwest Laser Center, 1990</td>
</tr>
<tr>
<td>Khairy Ahmed Tourk</td>
<td>B.S., University of Alexandria (Egypt); M.A., Vanderbilt University; Ph.D., University of California-Berkeley Associate Professor of Economics, 1972</td>
</tr>
<tr>
<td>Philip Troyk</td>
<td>B.S., University of Illinois-Urbana-Champaign; M.S., Ph.D., University of Illinois-Chicago Associate Professor of Electrical and Computer Engineering, 1983</td>
</tr>
<tr>
<td>Calvin Tazeng</td>
<td>B.S., M.S., National Tsinghua University (Taiwan); Ph.D., University of California-Berkeley Assistant Professor of Mechanical and Materials Engineering, 1998</td>
</tr>
<tr>
<td>Vincent Turitto</td>
<td>B.C.E., Manhattan College; Sc.D., Columbia University Professor of Biomedical Engineering and Director of the Pritzker Institute of Medical Engineering, 2000</td>
</tr>
<tr>
<td>John R. Twombly</td>
<td>B.S., University of Pennsylvania; M.B.A., Ph.D., University of Chicago; Certified Public Accountant Clinical Associate Professor of Accounting, 1992</td>
</tr>
<tr>
<td>Donald Richard Ucci</td>
<td>B.E., M.E., Ph.M., Ph.D., City University of New York Associate Professor of Electrical and Computer Engineering and Interim Chair, 1987</td>
</tr>
<tr>
<td>David Venerus</td>
<td>B.S., University of Rhode Island; M.S., Ph.D., Pennsylvania State University Associate Professor of Chemical and Environmental Engineering and Director of the Center of Excellence in Polymer Science and Engineering, 1989</td>
</tr>
<tr>
<td>Gerard Voland</td>
<td>B.S., M.S., University of California-Los Angeles; Ph.D., Tufts University Associate Professor of Mechanical Engineering, Associate Vice President for Undergraduate Education, and Director of the Interprofessional Projects Program, 1999</td>
</tr>
<tr>
<td>Peng-Jun Wan</td>
<td>B.S., Tsinghua University (China); Ph.D., University of Minnesota Assistant Professor of Computer Science, 1997</td>
</tr>
<tr>
<td>Albert Z.H. Wang</td>
<td>B.S., Tsinghua University (China); M.S., The Chinese Academy of Sciences (China); Ph.D., State University of New York-Buffalo Assistant Professor of Electrical and Computer Engineering, 1998</td>
</tr>
<tr>
<td>Rong Wang</td>
<td>B.S., M.S., Jilin University (China); Ph.D., University of Tokyo (Japan) Assistant Professor of Chemistry, 2000</td>
</tr>
<tr>
<td>Candace Wark</td>
<td>B.S., M.S., Michigan State University; Ph.D., Illinois Institute of Technology Professor of Mechanical and Aerospace Engineering and Associate Chair of Mechanical Engineering, 1988</td>
</tr>
<tr>
<td>Richard Warner</td>
<td>B.A., Stanford University; Ph.D., University of California-Berkeley; J.D., University of Southern California Law Center Associate Professor of Law and Faculty Director for the Center for Law and Computers, 1990</td>
</tr>
<tr>
<td>Darsh Tilakchand Wasan</td>
<td>B.S., University of Illinois-Urbana-Champaign; Ph.D., University of California-Berkeley Professor of Chemical and Environmental Engineering and Vice President for International Affairs, 1964</td>
</tr>
<tr>
<td>Vivian M. Weil</td>
<td>A.B., M.A., University of Chicago; Ph.D., University of Illinois Professor of Ethics and Director of the Center for the Study of Ethics in the Professions, 1972</td>
</tr>
<tr>
<td>Miles N. Wernick</td>
<td>B.A., Northwestern University; Ph.D., University of Rochester Associate Professor of Electrical and Computer Engineering, 1994</td>
</tr>
<tr>
<td>Catherine Wetzel</td>
<td>B.Arch., University of Cincinnati; M.Arch., University of Pennsylvania Studio Associate Professor of Architecture, 1989</td>
</tr>
</tbody>
</table>
Christopher G. White
B.S., University of Illinois; Ph.D., University of Minnesota
Assistant Professor of Physics, 1998

Patrick F. Whitney
B.F.A., University of Alberta (Canada); M.F.A., Cranbrook Academy of Art
Professor and Director of the Institute of Design, 1983

Steven Wilf
B.S., Arizona State University; J.D., Ph.D., Yale University
Assistant Professor of Law, 1997

David R. Williams
B.S.E., Stevens Institute of Technology; M.S.E., Ph.D., Princeton University
Professor of Mechanical and Aerospace Engineering and Director of the Fluid Dynamics Research Center, 1983

Christopher G. White
B.S., University of Illinois; Ph.D., University of Minnesota
Assistant Professor of Physics, 1998

Christopher G. White
B.S., University of Illinois; Ph.D., University of Minnesota
Assistant Professor of Physics, 1998

Geoffrey Williamson
B.S., M.S., Ph.D., Cornell University
Associate Professor of Electrical and Computer Engineering, 1989

Vida Winans
B.A., Cornell University; M.S., Illinois Institute of Technology
Instructor of Computer Science and Graduate Coordinator, 2000

Jay Wolke
B.F.A., Washington University; M.S., Illinois Institute of Technology
Lecturer in Photography, 1993

Thomas Tang Yum Wong
B.S., University of Hong Kong; M.S., Ph.D., Northwestern University
Professor of Electrical and Computer Engineering, 1981

Richard W. Wright
B.S., California Institute of Technology; J.D., Loyola University of Los Angeles; L.L.M., Harvard University
Professor of Law, 1985

Yongyi Yang
B.S.E.E., M.S.E.E., Northern Jiatong University (China); M.S., Ph.D., Illinois Institute of Technology
Assistant Professor of Electrical and Computer Engineering, 1994

Michael Young
A.B., University of Chicago; M.A., Ph.D., Adelphi University
Associate Professor of Psychology and Director of Clinical Training, 1996

John F. Zasadzinski
B.S., Illinois Benedictine College; Ph.D., Iowa State University
Professor of Physics, 1982

Hong Zhang
B.S., Beijing Normal University (China); MS., Ph.D., Michigan State University
Research Professor of Computer Science, 2000
<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>William Applebaum</td>
<td>Associate Professor of History</td>
<td>1972-1995</td>
</tr>
<tr>
<td>Charles R. Bauer</td>
<td>Associate Professor of Computer Science</td>
<td>1985-1996</td>
</tr>
<tr>
<td>Robert John Bonthron</td>
<td>Professor of Mechanical and Aerospace Engineering</td>
<td>1947-1991</td>
</tr>
<tr>
<td>Harold Walter Bretz</td>
<td>Associate Professor of Microbiology</td>
<td>1957-1986</td>
</tr>
<tr>
<td>Norman Nathan Breyer</td>
<td>Professor of Metallurgical and Materials Engineering</td>
<td>1964-1991</td>
</tr>
<tr>
<td>George D. Byrne</td>
<td>Professor of Applied Mathematics</td>
<td>1994-1998</td>
</tr>
<tr>
<td>Ray Aaron Burnstein</td>
<td>Professor of Physics</td>
<td>1965-2001</td>
</tr>
<tr>
<td>Thomas Manuel Calero</td>
<td>Associate Professor of Management</td>
<td>1968-1993</td>
</tr>
<tr>
<td>Kwang-Han Chu</td>
<td>Professor of Civil Engineering</td>
<td>1956-1984</td>
</tr>
<tr>
<td>Joseph San-Hoon Chung</td>
<td>Professor of Economics</td>
<td>1964-1995</td>
</tr>
<tr>
<td>Martin Alvin Cohen</td>
<td>Associate Professor of Economics Management</td>
<td>1964-1980</td>
</tr>
<tr>
<td>William White Colvert</td>
<td>Associate Professor of Physics and Director of the Evening Division</td>
<td>1919-1964</td>
</tr>
<tr>
<td>George Edson Danforth</td>
<td>Professor of Architecture</td>
<td>1940-1981</td>
</tr>
<tr>
<td>William Frank Darsow</td>
<td>Associate Professor of Mathematics</td>
<td>1961-1990</td>
</tr>
<tr>
<td>Pearce Davis</td>
<td>Professor of Economics</td>
<td>1948-1973</td>
</tr>
<tr>
<td>John DeCicco</td>
<td>Professor of Mathematics</td>
<td>1962-1976</td>
</tr>
<tr>
<td>Platon C. Deliyannis</td>
<td>Professor of Applied Mathematics</td>
<td>1962-2001</td>
</tr>
<tr>
<td>Lloyd Hamilton Donnell</td>
<td>Research Professor of Mechanics, 1939-1962</td>
<td></td>
</tr>
<tr>
<td>John Drac</td>
<td>Associate Professor of Law, 1957-1980</td>
<td></td>
</tr>
<tr>
<td>Joseph A. Erwin</td>
<td>Associate Professor of Biology, 1967-2001</td>
<td></td>
</tr>
<tr>
<td>Paul Edward Fanta</td>
<td>Professor of Chemistry, 1948-1984</td>
<td></td>
</tr>
<tr>
<td>Andrew Akos Fejer</td>
<td>Professor of Mechanics and Mechanical Aerospace Engineering, 1958-1978</td>
<td></td>
</tr>
<tr>
<td>Robert Filler</td>
<td>Professor of Chemistry, 1955-1994</td>
<td></td>
</tr>
<tr>
<td>Nathan Goldman</td>
<td>Professor of Sociology, 1968-1973</td>
<td></td>
</tr>
<tr>
<td>Paul Gordon</td>
<td>Professor of Metallurgical Engineering, 1954-1982</td>
<td></td>
</tr>
<tr>
<td>Lois Graham</td>
<td>Professor of Mechanical Engineering, 1949-1985</td>
<td></td>
</tr>
<tr>
<td>Nicholas Grecz</td>
<td>Professor of Microbiology, 1963-1982</td>
<td></td>
</tr>
<tr>
<td>Leonard Irwin</td>
<td>Professor of Physics, 1957-1996</td>
<td></td>
</tr>
<tr>
<td>R. Ogden Hannaford</td>
<td>Professor of Architecture, 1960-1986</td>
<td></td>
</tr>
<tr>
<td>Isidore Hauser</td>
<td>Professor of Physics, 1958-1986</td>
<td></td>
</tr>
<tr>
<td>Teru Hayashi</td>
<td>Professor of Biology, 1967-1979</td>
<td></td>
</tr>
<tr>
<td>Warren Heindl</td>
<td>Professor of Law, 1949-1994</td>
<td></td>
</tr>
<tr>
<td>Fred F. Herzog</td>
<td>Professor of Law and Dean of Chicago-Kent College of Law, 1947-1973</td>
<td></td>
</tr>
<tr>
<td>Geoffrey Trevor Higgins</td>
<td>Professor of Materials Engineering, 1969-1998</td>
<td></td>
</tr>
<tr>
<td>Francis Clifford George Hoskin</td>
<td>Professor of Biology, 1969-1994</td>
<td></td>
</tr>
<tr>
<td>Frank Maria Hrachovsky</td>
<td>Associate Professor of Engineering Graphics, 19461973</td>
<td></td>
</tr>
<tr>
<td>Robert Francis Irving</td>
<td>Associate Professor of English, 1967-1995</td>
<td></td>
</tr>
<tr>
<td>Donald Komen Jasper</td>
<td>Professor of Biology, 1969-1996</td>
<td></td>
</tr>
<tr>
<td>Henry Knepler</td>
<td>Professor of English, 1947-1989</td>
<td></td>
</tr>
<tr>
<td>Daniel Koblick</td>
<td>Associate Professor of Physiology, 1963-1991</td>
<td></td>
</tr>
<tr>
<td>Willis George Labes</td>
<td>Professor of Fire Protection Engineering, 1946-1979</td>
<td></td>
</tr>
<tr>
<td>Zalman Lavan</td>
<td>Professor of Mechanical and Aerospace Engineering, 1965-1991</td>
<td></td>
</tr>
<tr>
<td>Robert Joseph Malhiot</td>
<td>Professor of Physics, 1956-1987</td>
<td></td>
</tr>
<tr>
<td>Jordan J. Markham</td>
<td>Professor of Physics, 1962-1981</td>
<td></td>
</tr>
<tr>
<td>Kenneth Phillip Milbradt</td>
<td>Associate Professor of Civil Engineering, 1946-1985</td>
<td></td>
</tr>
<tr>
<td>Mark Vladimir Morkovin</td>
<td>Professor of Mechanical Engineering, 1967-1982</td>
<td></td>
</tr>
<tr>
<td>Lester Charles Peach</td>
<td>Professor of Electrical and Computer Engineering, 1956-1987</td>
<td></td>
</tr>
<tr>
<td>H. Lennart Pearson</td>
<td>Associate Professor of Applied Mathematics and Dean of Graduate Studies, 1954-1994</td>
<td></td>
</tr>
<tr>
<td>Bernard Rasof</td>
<td>Professor of Mechanical Engineering, 1964-1982</td>
<td></td>
</tr>
<tr>
<td>Haim Reingold</td>
<td>Professor of Mathematics, 1943-1975</td>
<td></td>
</tr>
<tr>
<td>John Theodore Rettaliata</td>
<td>Professor of Mechanical Engineering and President Emeritus, 1945-1973</td>
<td></td>
</tr>
</tbody>
</table>
Allan H. Roush
Professor of Biochemistry,
1951-1982

Leon Eugene Stover
Professor of Anthropology,
1965-1995

John Lawrence Way
Professor of Mechanical and Aerospace Engineering and Associate Chair of Aerospace Engineering,

Fay Horton Sawyier
Associate Professor of Philosophy,
1975-1988

Gang Neng Tao
Professor of Mechanics and Mathematics, 1955-1996

Erwin Wilbur Weber
Associate Professor of Electrical and Computer Engineering,
1961-1998

Abe Sklar
Professor of Mathematics,
1956-1995

T. Paul Torda
Professor of Mechanical Engineering and Director of the E³ Program Center,
1962-1977

Dale Arroy Webster
Professor of Biology,
1968-2001

Spencer B. Smith
Professor of Management Sciences and Industrial Management,
1966-1996

San Utsunomiya
Associate Professor of Architecture,
1966-1993

Scott Emerson Wood
Professor of Chemistry,
1948-1975

Harold Norman Spector
Professor of Physics,
1966-2001

William F. Zacharias
Professor of Law and Dean of the Chicago-Kent College of Law,
1933-1970

David Mordecai Zesmer
Professor of English,
1962-1992

John Lawrence Way
Professor of Mechanical and Aerospace Engineering and Associate Chair of Aerospace Engineering,

Earl Frederick Zwicker
Professor of Physics,
1956-1991

San Utsunomiya
Associate Professor of Architecture,
1966-1993

William F. Zacharias
Professor of Law and Dean of the Chicago-Kent College of Law,
1933-1970
Directions

Getting to the Main Campus

Airports
IIT and Chicago are served by O'Hare International Airport and Midway Airport. Public and private transportation is available from the airports to downtown Chicago and IIT campuses.

Train
Commuter railroads to Union and Northwestern train stations (both off Canal Street), then public transportation, taxi or IIT shuttle bus from the Downtown Campus at 565 W. Adams Street to Main Campus.

Bus
To Greyhound terminal, then taxi or public transportation to IIT.

Public Transportation
1. CTA Red Line (Howard-Dan Ryan) to 35th Street Station.
2. CTA Green Line (Lake-Englewood-Jackson Park) to 35-Bronzeville-IIT station.
3. CTA bus lines with stops on State Street (#29) or Michigan Avenue (#35).

Automobile
From North: Dan Ryan Expressway east to 31st Street exit, continue south to 33rd Street, turn left (east) to just past State Street. Visitor parking is on the right (southeast corner). From South: Dan Ryan Expressway west to 35th Street exit, continue north to 33rd Street, turn right (east) to just past State Street. Visitor parking is on the right (southeast corner). From Lake Shore Drive: Exit at 31st Street, go inland (west) to State Street, turn left (south) to 33rd Street, turn left and visitor parking is on the right (southeast corner).

Parking
Some visitor parking is available in lots at the southeast corner of 33rd and State streets and the northeast corner of 31st and State streets. By special arrangement, events parking is usually available in the fraternity lot at 33rd and Wabash and, for evening events, in the lot west of Hermann Union Building. A few hourly spaces are available just south of the Commons Building and west of Hermann Union Building. Please call the Public Safety Department at 312.808.6300 if you need assistance in finding parking.
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>academic appeals 179, 184, 189</td>
</tr>
<tr>
<td>dismissal 179</td>
</tr>
<tr>
<td>regulations 179</td>
</tr>
<tr>
<td>loads 179</td>
</tr>
<tr>
<td>probation 179</td>
</tr>
<tr>
<td>program audit 179</td>
</tr>
<tr>
<td>progress 22, 179</td>
</tr>
<tr>
<td>academic resources 187</td>
</tr>
<tr>
<td>Accounting courses 120</td>
</tr>
<tr>
<td>Accreditation for: aerospace engineering 85</td>
</tr>
<tr>
<td>architecture 49</td>
</tr>
<tr>
<td>chemical engineering 60</td>
</tr>
<tr>
<td>civil engineering 71</td>
</tr>
<tr>
<td>computer engineering 71</td>
</tr>
<tr>
<td>electrical engineering 85</td>
</tr>
<tr>
<td>mechanical engineering 85</td>
</tr>
<tr>
<td>metallurgical engineering 9</td>
</tr>
<tr>
<td>university 14</td>
</tr>
<tr>
<td>ACT (American College Test) 14</td>
</tr>
<tr>
<td>Activities (Student Activities) 191</td>
</tr>
<tr>
<td>athletics 190</td>
</tr>
<tr>
<td>Administration of IIT 197</td>
</tr>
<tr>
<td>Admission advanced placement 14, 180</td>
</tr>
<tr>
<td>application fee 15, 23</td>
</tr>
<tr>
<td>confirmation fee 16</td>
</tr>
<tr>
<td>deadlines 13, 15</td>
</tr>
<tr>
<td>deposit 15, 23</td>
</tr>
<tr>
<td>entrance examinations 14, 183</td>
</tr>
<tr>
<td>full-time students 13</td>
</tr>
<tr>
<td>honors law 114</td>
</tr>
<tr>
<td>honors med 115</td>
</tr>
<tr>
<td>immunization requirement 15</td>
</tr>
<tr>
<td>nondegree 18</td>
</tr>
<tr>
<td>on-line 13, 14</td>
</tr>
<tr>
<td>part-time 17</td>
</tr>
<tr>
<td>procedures 13</td>
</tr>
<tr>
<td>reinstatement 18, 189</td>
</tr>
<tr>
<td>reply date 13</td>
</tr>
<tr>
<td>requirements 14</td>
</tr>
<tr>
<td>staff 197</td>
</tr>
<tr>
<td>summer school 18</td>
</tr>
<tr>
<td>transfer credit 16, 189</td>
</tr>
<tr>
<td>transfer students 16</td>
</tr>
<tr>
<td>Web-based 13, 14</td>
</tr>
<tr>
<td>Advanced Placement AP credit 14</td>
</tr>
<tr>
<td>exam credit 180, 181</td>
</tr>
<tr>
<td>IIT Placement 181, 183</td>
</tr>
<tr>
<td>Advising academic (see counseling) 179</td>
</tr>
<tr>
<td>counseling and health 191</td>
</tr>
<tr>
<td>Aerospace (see also Air Force) 35</td>
</tr>
<tr>
<td>Department of Mechanical, Materials and Aerospace Engineering 35</td>
</tr>
<tr>
<td>Column</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>fire protection</td>
</tr>
<tr>
<td>specializations</td>
</tr>
<tr>
<td>construction engineering</td>
</tr>
<tr>
<td>architectural engineering</td>
</tr>
<tr>
<td>civil-environmental</td>
</tr>
<tr>
<td>geotechnical engineering</td>
</tr>
<tr>
<td>structural engineering</td>
</tr>
<tr>
<td>transportation engineering</td>
</tr>
<tr>
<td>Class Attendance</td>
</tr>
<tr>
<td>CLEP (College Level</td>
</tr>
<tr>
<td>Examination Board</td>
</tr>
<tr>
<td>College Level Examination Program</td>
</tr>
<tr>
<td>Colleges and Schools</td>
</tr>
<tr>
<td>Armour College of Engineering and Science</td>
</tr>
<tr>
<td>Department of Architecture</td>
</tr>
<tr>
<td>Chicago-Kent-College of Law</td>
</tr>
<tr>
<td>Graduate College</td>
</tr>
<tr>
<td>Institute of Design</td>
</tr>
<tr>
<td>Institute of Psychology</td>
</tr>
<tr>
<td>Stuart Graduate School of Business</td>
</tr>
<tr>
<td>Undergraduate College</td>
</tr>
<tr>
<td>Combined Degrees</td>
</tr>
<tr>
<td>B.S./M.D.</td>
</tr>
<tr>
<td>B.Arch./M.S.</td>
</tr>
<tr>
<td>B.Arch./Master of Business Administration</td>
</tr>
<tr>
<td>B.S./Law</td>
</tr>
<tr>
<td>B.S./Master of Business Administration</td>
</tr>
<tr>
<td>B.S./S.M. in engineering</td>
</tr>
<tr>
<td>Psychology</td>
</tr>
<tr>
<td>Communication and Technology</td>
</tr>
<tr>
<td>Communication Across the Curriculum</td>
</tr>
<tr>
<td>courses in communication</td>
</tr>
<tr>
<td>Communication:</td>
</tr>
<tr>
<td>Computer Literacy</td>
</tr>
<tr>
<td>telecommunication</td>
</tr>
<tr>
<td>Comuter Student</td>
</tr>
<tr>
<td>Composition courses</td>
</tr>
<tr>
<td>Computational Structures</td>
</tr>
<tr>
<td>minor</td>
</tr>
<tr>
<td>computer</td>
</tr>
<tr>
<td>IIT computer facilities</td>
</tr>
<tr>
<td>Computer-Aided Design (CAD)</td>
</tr>
<tr>
<td>(see also graphics)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cultural Programs</td>
</tr>
<tr>
<td>multicultural programs</td>
</tr>
<tr>
<td>Electromechanical design</td>
</tr>
<tr>
<td>Elmhurst College</td>
</tr>
<tr>
<td>certificates</td>
</tr>
<tr>
<td>Topic</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Married Students</td>
</tr>
<tr>
<td>Master Degrees</td>
</tr>
<tr>
<td>Material Engineering</td>
</tr>
<tr>
<td>B.S. in metallurgical engineering courses</td>
</tr>
<tr>
<td>B.S. in metallurgical engineering minor</td>
</tr>
<tr>
<td>materials engineering</td>
</tr>
<tr>
<td>polymer science</td>
</tr>
<tr>
<td>premedical studies</td>
</tr>
<tr>
<td>Materials Science Courses</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>B.S. in Mechanical Engineering</td>
</tr>
<tr>
<td>accreditation</td>
</tr>
<tr>
<td>courses</td>
</tr>
<tr>
<td>double degree</td>
</tr>
<tr>
<td>minor</td>
</tr>
<tr>
<td>statistics</td>
</tr>
<tr>
<td>Mechanical Engineering statistics</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>accreditation</td>
</tr>
<tr>
<td>courses</td>
</tr>
<tr>
<td>double degree</td>
</tr>
<tr>
<td>minor</td>
</tr>
<tr>
<td>statistics</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>B.S. in Mechanical Engineering</td>
</tr>
<tr>
<td>accreditation</td>
</tr>
<tr>
<td>courses</td>
</tr>
<tr>
<td>double degree</td>
</tr>
<tr>
<td>minor</td>
</tr>
<tr>
<td>statistics</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>B.S. in Mechanical Engineering</td>
</tr>
<tr>
<td>accreditation</td>
</tr>
<tr>
<td>courses</td>
</tr>
<tr>
<td>double degree</td>
</tr>
<tr>
<td>minor</td>
</tr>
<tr>
<td>statistics</td>
</tr>
<tr>
<td>Medicine</td>
</tr>
<tr>
<td>B.S./M.D. degree</td>
</tr>
<tr>
<td>counseling</td>
</tr>
<tr>
<td>honors engineering</td>
</tr>
<tr>
<td>and medicine program</td>
</tr>
<tr>
<td>medical studies</td>
</tr>
<tr>
<td>medical assistance</td>
</tr>
<tr>
<td>Merit Scholarships</td>
</tr>
<tr>
<td>Metallurgical Engineering</td>
</tr>
<tr>
<td>courses</td>
</tr>
<tr>
<td>B.S. degree</td>
</tr>
<tr>
<td>Midwest College of Engineering</td>
</tr>
<tr>
<td>Mines van der Rohe, Ludwig</td>
</tr>
<tr>
<td>Military Science ROTC</td>
</tr>
<tr>
<td>Department of Military Science</td>
</tr>
<tr>
<td>Science courses</td>
</tr>
<tr>
<td>Philosophy courses</td>
</tr>
<tr>
<td>military science minor</td>
</tr>
<tr>
<td>Ministry</td>
</tr>
<tr>
<td>Minority Programs</td>
</tr>
<tr>
<td>Organization of African American Students</td>
</tr>
<tr>
<td>Latinos Involved</td>
</tr>
<tr>
<td>in Further Education</td>
</tr>
<tr>
<td>Women's Center</td>
</tr>
<tr>
<td>B.S. in metallurgical engineering major</td>
</tr>
<tr>
<td>Minor</td>
</tr>
<tr>
<td>Mission Statement</td>
</tr>
<tr>
<td>Moffett Campus</td>
</tr>
<tr>
<td>Moholy-Nagy</td>
</tr>
<tr>
<td>Molecular Biochemistry and Biophysics</td>
</tr>
<tr>
<td>Multicultural Programs</td>
</tr>
<tr>
<td>(see also Minority Programs)</td>
</tr>
<tr>
<td>Multimedia Courses</td>
</tr>
<tr>
<td>Music Minor</td>
</tr>
<tr>
<td>Physics</td>
</tr>
<tr>
<td>Department of Physical Sciences</td>
</tr>
<tr>
<td>B.S. in Physics</td>
</tr>
<tr>
<td>courses</td>
</tr>
<tr>
<td>honors program</td>
</tr>
<tr>
<td>minor</td>
</tr>
<tr>
<td>Placement</td>
</tr>
<tr>
<td>credit by examination</td>
</tr>
<tr>
<td>place testing</td>
</tr>
<tr>
<td>Planning, City and Regional</td>
</tr>
<tr>
<td>Police (see Public Safety)</td>
</tr>
<tr>
<td>Department of Social Sciences</td>
</tr>
<tr>
<td>courses</td>
</tr>
<tr>
<td>degree</td>
</tr>
<tr>
<td>general education requirement</td>
</tr>
<tr>
<td>minor</td>
</tr>
<tr>
<td>health care and American</td>
</tr>
<tr>
<td>society</td>
</tr>
<tr>
<td>law and society</td>
</tr>
<tr>
<td>political science</td>
</tr>
<tr>
<td>public administration</td>
</tr>
<tr>
<td>urban studies</td>
</tr>
<tr>
<td>Polymer Science and Engineering</td>
</tr>
<tr>
<td>Minor</td>
</tr>
<tr>
<td>Post-Baccalaureate Certificate Programs</td>
</tr>
<tr>
<td>Post Baccalaureate Premedical Programs</td>
</tr>
<tr>
<td>Minor</td>
</tr>
<tr>
<td>Pre-Law Studies</td>
</tr>
<tr>
<td>adviser</td>
</tr>
<tr>
<td>honors law</td>
</tr>
<tr>
<td>Marine</td>
</tr>
<tr>
<td>Premedical</td>
</tr>
<tr>
<td>Military Science</td>
</tr>
<tr>
<td>scholarship</td>
</tr>
<tr>
<td>Rush Medical College</td>
</tr>
<tr>
<td>B.S./M.D. degree</td>
</tr>
<tr>
<td>counseling</td>
</tr>
<tr>
<td>honors engineering</td>
</tr>
<tr>
<td>and medicine program</td>
</tr>
<tr>
<td>medical studies</td>
</tr>
<tr>
<td>medical assistance</td>
</tr>
<tr>
<td>Merit Scholarships</td>
</tr>
<tr>
<td>Metallurgical Engineering</td>
</tr>
<tr>
<td>courses</td>
</tr>
<tr>
<td>B.S. degree</td>
</tr>
<tr>
<td>Midwest College of Engineering</td>
</tr>
<tr>
<td>Mines van der Rohe, Ludwig</td>
</tr>
<tr>
<td>Military Science ROTC</td>
</tr>
<tr>
<td>Department of Military Science</td>
</tr>
<tr>
<td>Science courses</td>
</tr>
<tr>
<td>Philosophy courses</td>
</tr>
<tr>
<td>military science minor</td>
</tr>
<tr>
<td>Ministry</td>
</tr>
<tr>
<td>Minority Programs</td>
</tr>
<tr>
<td>Organization of African American Students</td>
</tr>
<tr>
<td>Latinos Involved</td>
</tr>
<tr>
<td>in Further Education</td>
</tr>
<tr>
<td>Women's Center</td>
</tr>
</tbody>
</table>
ILLINOIS INSTITUTE OF TECHNOLOGY

courses
- political science: 168
- public administration: 163
- sociology: 172

general education requirement
- B.S. degree: 81
- minor: 111

health care and American society: 110

law and society: 110

political science: 110

public administration: 110

sociology: 111

urban studies: 111

Sociology (see social sciences): Telephone Directory back cover

Software Engineering Minor: Test (see also exams)

Sororities: Credit by Examination 24, 180

Spanish: placement testing 180, 183

Special Programs: writing proficiency 30, 183

Sports: Transcripts 184

Statistics: admission 15

IIT demographics: exchange program 115

status
- change of: 180
- full-time/part-time: 179
- non-degree: 12
- probation: 179

Stuart Graduate School of Business: to campus 220

Student Affairs Office: engineering 61, 127

Student Center: Trustees 196

Student Demographics: Tuition 23, 25

Student Leadership Committee (SLC): 23, 191

Student Life: 187, 197

Student Services career development: 187

commuter student services: 191

cooperative education counseling: 191

cultural-religious: 181

disability resources: 191

educational: 189

government: 191

health: 191

international: 189

multicultural: 190

Residence Life Office: 191

Student Affairs Office: admissions 13, 14

Women’s Center: courses 8, 18

Study Abroad Programs: 115

Summer School admission: 18

calendar: 4
course load: 179

non-IIT: 183

T

TechMate Program: 191

Technical and Professional Communications: Writing

Technology and Human Affairs: proficiency policy 31, 181

Minor: Center 190

tutoring: 190

Telephone Directory back cover

Test (see also exams)

Credit by Examination 24, 180

placement testing 180, 183

writing proficiency 30, 183

writing

Transfer

admission 15

credit 14, 16, 183, 186

exchange program 115

permission 196

transfer student

scholarships 16

transfer students 14

Transportation

to campus 220

transportation

Stuart Graduate School of Business: 220

Student Affairs Office: engineering 61, 127

Student Center: Trustees 196

Student Demographics: Tuition 23, 25

Student Leadership Committee (SLC): 23, 191

Student Life: 187, 197

Student Services career development: 187

commuter student services: 191

cooperative education counseling: 191

cultural-religious: 181

disability resources: 191

educational: 189

government: 191

health: 191

international: 189

multicultural: 190

Residence Life Office: 191

Student Affairs Office: admissions 13, 14

Women’s Center: courses 8, 18

Study Abroad Programs: 115

Summer School admission: 18

calendar: 4
course load: 179

non-IIT: 183

T

TechMate Program: 191

Technical and Professional Communications: Writing

Technology and Human Affairs: proficiency policy 31, 181

Minor: Center 190

tutoring: 190

Telephone Directory back cover

Test (see also exams)

Credit by Examination 24, 180

placement testing 180, 183

writing proficiency 30, 183

writing

Transfer

admission 15

credit 14, 16, 183, 186

exchange program 115

permission 196

transfer student

scholarships 16

transfer students 14

Transportation

to campus 220

transportation

Stuart Graduate School of Business: 220

Student Affairs Office: engineering 61, 127

Student Center: Trustees 196

Student Demographics: Tuition 23, 25

Student Leadership Committee (SLC): 23, 191

Student Life: 187, 197

Student Services career development: 187

commuter student services: 191

cooperative education counseling: 191

cultural-religious: 181

disability resources: 191

educational: 189

government: 191

health: 191

international: 189

multicultural: 190

Residence Life Office: 191

Student Affairs Office: admissions 13, 14

Women’s Center: courses 8, 18

Study Abroad Programs: 115

Summer School admission: 18

calendar: 4
course load: 179

non-IIT: 183

VanderCook School of Music: 8, 110, 118, 219

V

VanderCook School of Music: 8, 110, 118, 219

V

Veterans’ Educational Benefits: 22

W

Withdrawal

from a course 4, 181

from the university 184, 189

Wheaton College: 116

W

Web

admissions 13, 14

courses 8, 18

Internet Communications, B.S. degree: 79

minor: 111

Wheaton College: 116

Withdrawal

from a course 4, 181

from the university 184, 189
Telephone Directory

Maps for the Downtown, Main and Rice campuses are on page 219. When calling from a campus phone, use last five digits only.

Administrative and Service

<table>
<thead>
<tr>
<th>Service</th>
<th>Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Resource Center</td>
<td>567.5216</td>
</tr>
<tr>
<td>Office of Undergraduate Admission (full-time)</td>
<td>567.3025</td>
</tr>
<tr>
<td>Admission, Undergraduate (part-time)</td>
<td>567.3300</td>
</tr>
<tr>
<td>Alumni Relations</td>
<td>567.5040</td>
</tr>
<tr>
<td>Athletics and Recreation</td>
<td>567.3296</td>
</tr>
<tr>
<td>Bookstore</td>
<td>567.3120</td>
</tr>
<tr>
<td>Bursar's Office</td>
<td>567.3785</td>
</tr>
<tr>
<td>Campus Ministry</td>
<td>567.3160</td>
</tr>
<tr>
<td>Career Development Center</td>
<td>567.6800</td>
</tr>
<tr>
<td>Communications & Marketing</td>
<td>567.3104</td>
</tr>
<tr>
<td>Computing and Network Services</td>
<td>567.5962</td>
</tr>
<tr>
<td>Counseling and Health Service</td>
<td>808.7100</td>
</tr>
<tr>
<td>Disability Resources</td>
<td>567.5744</td>
</tr>
<tr>
<td>Educational Services Office</td>
<td>567.3300</td>
</tr>
<tr>
<td>Financial Aid (new students)</td>
<td>567.3025</td>
</tr>
<tr>
<td>Financial Aid (continuing students)</td>
<td>567.7219</td>
</tr>
<tr>
<td>Housing</td>
<td>567.5075</td>
</tr>
<tr>
<td>ITV</td>
<td>567.3460</td>
</tr>
<tr>
<td>International Center</td>
<td>567.3680</td>
</tr>
<tr>
<td>Galvin Library (Main Campus)</td>
<td>567.3355</td>
</tr>
<tr>
<td>Moffett Campus</td>
<td>708.563.1576</td>
</tr>
<tr>
<td>Multicultural Programs Center</td>
<td>567.5249</td>
</tr>
<tr>
<td>Public Safety Department</td>
<td>808.6300</td>
</tr>
<tr>
<td>Residence Life Office</td>
<td>808.6400</td>
</tr>
<tr>
<td>Daniel F. and Ada L. Rice Campus</td>
<td>630.682.6000</td>
</tr>
<tr>
<td>Student Affairs</td>
<td>567.3080</td>
</tr>
<tr>
<td>Student and Greek Activities</td>
<td>567.3075</td>
</tr>
<tr>
<td>Student Services Center</td>
<td>567.3100</td>
</tr>
<tr>
<td>Undergraduate College</td>
<td>567.3947</td>
</tr>
<tr>
<td>Women's Educational Development Center</td>
<td>567.3775</td>
</tr>
</tbody>
</table>

Colleges and Academic Units

<table>
<thead>
<tr>
<th>College/Unit</th>
<th>Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force Aerospace Studies</td>
<td>567.3525</td>
</tr>
<tr>
<td>College of Architecture</td>
<td>567.3230</td>
</tr>
<tr>
<td>Applied Mathematics</td>
<td>567.8980</td>
</tr>
<tr>
<td>Armour College</td>
<td>567.3163</td>
</tr>
<tr>
<td>Biological, Chemical and Physical Sciences</td>
<td>567.3480</td>
</tr>
<tr>
<td>Stuart School of Business</td>
<td>906.6500</td>
</tr>
<tr>
<td>Chemical and Environmental Engineering</td>
<td>567.3040</td>
</tr>
<tr>
<td>Chicago-Kent College of Law</td>
<td>906.5000</td>
</tr>
<tr>
<td>Civil and Architectural Engineering</td>
<td>567.3540</td>
</tr>
<tr>
<td>Computer Science</td>
<td>567.5150</td>
</tr>
<tr>
<td>Institute of Design</td>
<td>595.4900</td>
</tr>
<tr>
<td>Electrical and Computer Engineering</td>
<td>567.3400</td>
</tr>
<tr>
<td>Graduate College</td>
<td>567.3024</td>
</tr>
<tr>
<td>Humanities</td>
<td>567.3465</td>
</tr>
<tr>
<td>Manufacturing Technology</td>
<td>567.3650</td>
</tr>
<tr>
<td>Mechanical, Materials and Aerospace Engineering</td>
<td>567.3175</td>
</tr>
<tr>
<td>Military Science</td>
<td>567.7553</td>
</tr>
<tr>
<td>Naval Science</td>
<td>567.3530</td>
</tr>
<tr>
<td>Institute of Psychology</td>
<td>567.3500</td>
</tr>
<tr>
<td>Public Administration</td>
<td>906.5198</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>567.5128</td>
</tr>
<tr>
<td>Undergraduate College</td>
<td>567.947</td>
</tr>
</tbody>
</table>